• Title/Summary/Keyword: Institute of Civil Engineers

Search Result 917, Processing Time 0.031 seconds

Composting of Water Hyacinth using a Pilot Scale Rotary Drum Composter

  • Singh, Waikhom Roshan;Das, Ayan;Kalamdhad, Ajay
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.69-75
    • /
    • 2012
  • Composting of water hyacinth, mixed with cattle manure, rice husk and sawdust in four different proportions, was performed in a pilot scale rotary drum composter. The physico-chemical characteristics, i.e., temperature, moisture content, pH, electrical conductivity, total organic matter (OM), nitrogen dynamics and nutrients were evaluated during the 20 days composting process. The stabilities of the composts were also investigated with respirometric analysis, i.e., $CO_2$ evolution rates and oxygen uptake rate (OUR). Among all trials, trial 1 (6 water hyacinth, 3 cattle manure, 1 rice husk) indicated the best composting mix, as shown by the highest temperature profile and OM loss, and lowest $CO_2$ evolution rate and OUR.

Investigations of Mixing Time Scales in a Baffled Circular Tank with a Surface Aerator

  • Kumar, Bimlesh;Patel, Ajey;Rao, Achanta
    • Environmental Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.47-51
    • /
    • 2011
  • The oxygen transfer rate is a parameter that characterizes the gas-liquid mass transfer in surface aerators. Gas-liquid transfer mechanisms in surface aeration tanks depend on two different extreme lengths of time; namely, macromixing and micromixing. Small scale mixing close to the molecular level is referred to as micromixing; whereas, macromixing refers to mixing on a large scale. Using experimental data and numerical simulations, macro- and micro-scale parameters describing the two extreme time scales were investigated. A scale up equation to simulate the oxygen transfer rate with micromixing times was developed in geometrically similar baffled surface aerators.

Optimal Metal Dose of Alternative Cathode Catalyst Considering Organic Substances in Single Chamber Microbial Fuel Cells

  • Nam, Joo-Youn;Moon, Chungman;Jeong, Emma;Lee, Won-Tae;Shin, Hang-Sik;Kim, Hyun-Woo
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.145-150
    • /
    • 2013
  • Optimal preparation guidelines of a cathode catalyst layer by non-precious metal catalysts were evaluated based on electrochemical performance in single-chamber microbial fuel cells (MFCs). Experiments for catalyst loading rate revealed that iron(II) phthalocyanine (FePc) can be a promising alternative, comparable to platinum (Pt) and cobalt tetramethoxyphenylporphyrin (CoTMPP), including effects of substrate concentration. Results showed that using an optimal FePc loading of $1mg/cm^2$ was equivalent to a Pt loading of $0.35mg/cm^2$ on the basis of maximum power density. Given higher loading rates or substrate concentrations, FePc proved to be a better alternative for Pt than CoTMPP. Under the optimal loading rate, it was further revealed that 40 wt% of FePc to carbon support allowed for the best power generation. These results suggest that proper control of the non-precious metal catalyst layer and substrate concentration are highly interrelated, and reveal how those combinations promote the economic power generation of single-chamber MFCs.

GEOPHYSICAL CHARACTERIZATION OF MARINE CLAYS - FROM GEOTECHNICAL PARAMETER ESTIMATION TO PROCESS MONITORING -

  • Choi, Gye-Chun;Chang, Il-Han;Oh, Tae-Min;Kim, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.37-46
    • /
    • 2010
  • Marine clays are soft soil deposits having complicated mineralogy and formation characteristics. Thus, characterization of its geotechnical behavior has been a main issue for geotechnical engineers. Nowadays, the importance and applications of geophysical exploration on marine clays are increasing significantly according to the accuracy, efficiency, and reliability of geophysical survey technology. For marine clays, seismic survey is effective for density and elasticity characterization, while electro-magnetic wave provides the information about the fluid conductivity phenomena inside soil. For practical applications, elastic wave technology can evaluate the consolidation state of natural marine clay layers and estimate important geotechnical engineering parameters of artificially reclaimed marine deposits. Electrical resistivity can provide geophysical characteristics such as particle cementation, pore geometry shape, and pore material phase condition. Furthermore, nondestructive geophysical monitoring is applicable for risk management and efficiency enhancement during natural methane gas extraction from gas hydrate-bearing sediments.

  • PDF

Time Response Analysis of Caissons by Installing New Caisson on Existing Caisson Breakwater in Irregular Wave Condition (기존 케이슨방파제에 신규 케이슨 추가설치에 따른 불규칙파 조건에서 케이슨들의 시간응답 평가)

  • Min Su, Park;Young Taek, Kim;Sangki, Park;Jiyoung, Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.233-246
    • /
    • 2022
  • The design and the construction were carried out by installing new caissons on the back or the front of existing caissons to increase the structural stability of caisson breakwaters. In this study, we used the ANSYS AQWA program to analyze the wave forces acting on individual caissons according to the effects of wave-structure interaction when new caissons were additionally installed on existing caisson breakwaters. The wave force characteristics acting on the individual caisson were analyzed according to the distance among caissons in frequency domain analysis. In addition, the dynamic wave force characteristics were closely examined on the basis of the frequency at which the unusual distribution of wave forces occurs in irregular wave conditions using time domain analysis.

Interaction Analysis between Waves and Caissons by Damping Zone Effect for Installing New Caisson on Old Caisson Breakwater (기존 케이슨방파제에 신규 케이슨 추가설치 시 댐핑존 영향에 따른 유체와 케이슨들간의 상호작용 평가)

  • Park, Min Su;Kim, Young Taek;Park, Sangki;Min, Jiyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.5
    • /
    • pp.156-168
    • /
    • 2022
  • The design and construction are carried out to improve the structural stability of caisson breakwaters by installing new caissons on the front or rear of old caissons. The wave forces acting on caisson are excessively calculated by the resonance of fluid existing between the old caisson and the new caisson in the numerical analysis using potential flow. In this study, we used the damping zone option in ANSYS AQWA program to analyze the wave forces acting on individual caissons according to the interaction effects between the incident wave and the caisson. By applying the damping zone option to the fluid in which resonance occurs, the wave forces acting on individual caissons were calculated by the change of damping factor. In addition, the wave force characteristics acting on individual caissons were analyzed for the different distances between caissons in the frequency domain analysis.

Transformation of Long Waves Propagating over Trench (트렌치 위를 통과하는 장파의 변형)

  • Jung, Tae-Hwa;Suh, Kyung-Duck;Cho, Yong-Sik;Park, Sung-Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2007
  • An analytical solution for long waves propagating over an asymmetric trench is derived. The water depth inside the trench varies in proportion to a power of distance from the center of the trench. The mild-slope equation, governing equation, is transformed into second order ordinary differential equation with variable coefficients by using the long wave assumption and then the analytical solution is obtained by using the power series technique. The analytical solution is confirmed by comparison with the numerical solution. After calculating the analytical solution under various conditions, the results are analyzed.

Analysis of Regional Transit Convenience in Seoul Public Transportation Networks Using Smart Card Big Data (스마트카드 빅데이터를 이용한 서울시 지역별 대중교통 이동 편의성 분석)

  • Moon, Hyunkoo;Oh, Kyuhyup;Kim, SangKuk;Jung, Jae-Yoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.4
    • /
    • pp.296-303
    • /
    • 2016
  • In public transportation, smart cards have been introduced for the purpose of convenient payment systems. The smart card transaction data can be utilized not only for the exact and convenient payment but also for civil planning based on travel tracking of citizens. This paper focuses on the analysis of the transportation convenience using the smart card big data. To this end, a new index is developed to measure the transit convenience of each region by considering how passengers actually experience the transportation network in their travels. The movement data such as movement distance, time and amount between regions are utilized to access the public transportation convenience of each region. A smart card data of five working days in March is used to evaluate the transit convenience of each region in Seoul city. The contribution of this study is that a new transit convenience measure was developed based on the reality data. It is expected that this measure can be used as a means of quantitative analysis in civil planning such as a traffic policy or local policy.

A potential review on the influence of nanomaterials on the mechanical properties of high strength concrete

  • P. Jagadesh;Karthik Prabhu ;Moutassim Charai;Ibrahim Y. Hakeem;Emrah Madenci;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.649-666
    • /
    • 2023
  • In the current scenario, conventional concrete faces a substantial challenge in the modern era of the construction industry. Today's structures are massive, featuring innovative designs and strict time constraints. Conventional concrete does not provide the required compressive strength, tensile strength, flexural strength, toughness, and cracking resistance. As a result, most of engineers and professionals prefer to use ultra-high-performance concrete (UHPC), based on its wide advantages. Several advantages like mechanical and durability properties of UHPC provides dominant properties than the traditional concrete. Mix proportions of UHPC consists of higher powder content which provides maximum hydration and pozzolanic reaction, thereby contributing to the enhancement of the UHPC properties. Apart from that the nanomaterials provides the filler behavior, which will further improve the density. Enhanced density and mechanical properties lead to improved durability properties against water absorption and other typical chemicals. Nanomaterials are the most adopted materials for various applications, ranging in size from 0.1 nanometers to 100 nanometers. This article explores the effects of nanomaterial application in UHPC as a replacement for cementitious material or as an additive in the UHPC mix. The physical and durability properties modifications and improvements of UHPC, as well as negative effects, limitations, and shortcomings, are also analyzed.