• Title/Summary/Keyword: Instantaneous Torque Control

Search Result 103, Processing Time 0.026 seconds

A Novel Instantaneous Torque Control Scheme of Brushless Permanent Magnet Motor (브러시리스 영구자석 전동기의 새로운 순시토오크 제어 방법)

  • 최근국;박한웅;박성준;원태현;송달섭;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.862-867
    • /
    • 1999
  • In general, the realization of high performance brushless permanent magnet motors which are widely used in servo drive is focused on the linear control for ripple-free torque. This is also the main problem that should be solved in all AC motors including induction motor to achieve high performance control, and recent papers deal with this problem. In this paper, the novel optimal excitation scheme of brushless permanent magnet motor producing loss-minimized ripple-free torque based on the d-q-0 reference frame is presented including 3 phase unbalanced condition. The optimized phase current waveforms that are obtained by the proposed method can be a reference values and the motor winding currents are forced to track it by delta modulation technique. As a results, it can be shown that the proposed work can minimize the torque ripple by the optimal excitation current for brushless permanent magnet motor with any arbitrary phase back EMF waveform. Simulation and experimental results prove the validity and practical applications of the proposed control scheme.

  • PDF

Torque Ripple Reduction Method of SRM Drives Using Neural Network Technique (신경회로망기법을 이용한 SRM 드라이브의 토오크리플 저감방안)

  • Lee, Seong-Du;Jung, Tae-Uk;Ahn, Jin-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.227-229
    • /
    • 1997
  • The torque of SRM is developed by phase currents and inductance variation. The inductance of torque generation region is nonlinearly varied according to phase current. By this nonlinear characteristics, torque ripple can be generated on the condition of constant current. Otherwise, phase current should be controlled instantaneously in accordance with inductance to reduce torque ripple. In this paper, the control system with neural network that can reduce torque ripple is suggested. In this control system, instantaneous inductance and optimal current waveform for smallest torque ripple is obtained by neural network. And this required optimal current waveform is regulated by voltage control.

  • PDF

Extending Switching Frequency for Torque Ripple Reduction Utilizing a Constant Frequency Torque Controller in DTC of Induction Motors

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohd;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.148-155
    • /
    • 2011
  • Direct torque control(DTC) of induction machines is known to offer fast instantaneous torque and flux control with a simple control structure. However, this scheme has two major disadvantageous, namely, a variable inverter switching frequency and a high torque ripple. These problems occur due to the use of hysteresis comparators in conventional DTC schemes, particularly in controlling the output torque. This paper reviews the utilization of constant frequency torque controllers (CFTC) in DTC to solve these problems while retaining the simple control structure of DTC. Some extensions of the work in utilizing a CFTC will be carried out in this paper which can further reduce the torque ripple. This is particularly useful for a system which has a limited/low sampling frequency. The feasibility of a CFTC with an extended carrier frequency in minimizing the torque ripple is verified through experimental results.

IPMSM Sensorless control Based on Parameter Identification and Instantaneous Reactive Power (파라미터 동정과 순시무효전력을 이용한 IPMSM 센서리스 제어)

  • Kim, Won-Suk;Lee, Hyung;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.214-216
    • /
    • 2005
  • IPMSM is necessary to use the accurate values of the inductance for the precise torque control, because of using the reluctance torque of the IPM. This paper presents method to uses the hysteresis loop inclination of the flux and current measured by applying the positive and negative voltage pulse alternately on the each-axis. Moreover, presents algorithm for speed sensorless control based on parameter identification and instantaneous reactive power.

  • PDF

Adaptive Speed Identification for Sensorless Vector Control of Induction Motors with Torque (토크를 물리량으로 가지는 적응제어 구조의 센서리스 벡터제어)

  • 김도영;박철우;최병태;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.230-230
    • /
    • 2000
  • This paper describes a model reference adaptive system(MRAS) for speed control of vector-controlled induction motor without a speed sensor. The proposed approach is based on observing the instantaneous torque. The real torque is calculated by sensing stator current and estimated torque is calculated by stator current that is calculated by using estimated rotor speed. The speed estimation error is linearly proportional to error between real torque and estimated torque. The proposed feedback loop has linear component. Furthermore proposed method is robust to parameters variation. The effectiveness is verified by equation and simulation

  • PDF

Speed Sensorless Control of PMSM Using Direct Torque Control (직접 토크 제어를 사용한 영구자석 동기전동기의 센서리스 속도제어)

  • Shin, S.S.;Kim, S.K.;Lee, D.H.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.978-980
    • /
    • 2000
  • Sensorless PMSM is much studied for the industrial applications and home appliances because, a mechanical sensor reduces reliability and increases cost. Two types of instantaneous torque controls are basically used for high performance variable-speed a.c. drive : vector control and direct torque control. This paper investigates speed sensorless control of PMSM using direct torque control. The switching of inverter is determined from SVPWM realizing the command voltage which is obtained by flux error and measured current without d-q transformation. The rotor speed is estimated through adaptive observer with feedback loop. The simulation and experimental results indicate good performances.

  • PDF

Torque Ripple Minimization in Switched Reluctance Motor Drives Considering Magnetic Saturation (자기포화를 고려한 SRM의 토크리플 저감 제어)

  • Kang, Junho;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.48-54
    • /
    • 2014
  • This paper discusses study of torque ripple minimization employing an improved TDF(torque distribution function)-based instantaneous torque control to reduce acoustic noise and vibration problem of the SRM. As the flux linkage of the SRM is a nonlinear function of phase current and rotor position, design of optimal controller for the SRM is quite complicated. Hence, an accurate mathematical model considering the nonlinearity of the SRM is required. An improved TDF based torque control has been proposed in order to reduce the toque ripple at high speed operation. Dynamic simulation using Matlab/Simulink as well as Finite Element Analysis is presented. A prototype SRM for electric vehicle traction has been manufactured to validate the experimental results comparing the dynamic simulation results.

Sensorless Control for a Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시 무효전력을 이용한 IPM모터의 센서리스 제어)

  • Joung, Woo-Taik;Kang, Hyung-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1447-1449
    • /
    • 2005
  • An interior permanent magnet synchronous motor(IPMSM) is receiving increased attention for many industrial applications because of its high torque to inertia ratio, superior power density, and high efficiency. This paper presents algorithm for speed sensorless vector control based on an Instantaneous Reactive Power. Effectiveness or algorithm is confirmed by the experiments.

  • PDF

Least Order Load Torque.Inertia Observer for Low Speed Drive of Motor Using (전동기 극저속 운전을 위한 최소차원 부하토크.관성 관측기)

  • Kim Young-Chun;Kim Eun-Gi;Cho Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.575-579
    • /
    • 2006
  • In this paper, an instantaneous speed observer with a reduced order is proposed to implement an indirect control for a motor with excellent dynamic stability and performance in a very low speed region. The proposed observer can estimate the instantaneous speed in very low speed region and simplify the system configuration by adopting an least order load torque-inertia observer to estimate the load torque and the motor speed. Simulation are carried out to illustrate the performance of the proposed estimator at very low speed.

  • PDF

Low Speed Drive of Motor Using Least Order Load $Torque{\cdot}Inertia$ Observer (최소차원 토크${\cdot}$관성 관측기를 이용한 전동기 극저속 운전)

  • Kim, Eun-Gi;Jeon, Kee-Young;Oh, Bong-Hwan;Chung, Choon-Byeong;Lee, Hoon-Goo;Kim, Yong-Joo;Seo, Young-Soo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.234-236
    • /
    • 2005
  • In this paper, an instantaneous speed observer with a reduced order is proposed to implement an indirect control for an motor with excellent dynamic stability and performance in a very low speed region. The proposed observer can estimate the instantaneous speed in very low speed region and simplify the system configuration by adopting a least order load torque-inertia observer to estimate the load torque and the rotor speed. Simulation are carried out to illustrate the performance of the proposed estimator at very low speed.

  • PDF