• 제목/요약/키워드: Instantaneous Temperature

검색결과 211건 처리시간 0.029초

Gasoline과 연료첨가제(Cenox)의 자연발화에 관한 연구 (A Study on the Spontaneous Ignition of Gasoline and Additive of Fuel)

  • 최재욱;목연수;최일곤;전세호;임우섭;민철웅
    • 한국화재소방학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-5
    • /
    • 2006
  • 가연성 물질의 자연발화는 화재예방을 위한 중요한 인자가 된다. Gasoline과 Cenox의 최저발화온도는 시료량 $100{\mu}l$서 각각 $340.5^{\circ}C,\;368.5^{\circ}C$를 구하였다. 또한 순간발화온도는 발화되는 시간이 1.0 sec가 되는 온도인 $416^{\circ}C,\;427^{\circ}C$를 구하였다. 혼합물질에 대한 시료량과 최저발화온도는 Cenox 60 v/v% 이하 첨가시 최저발화온도의 변화는 적게 나타났으나, 80 v/v% 이상에서는 높게 나타났다. 따라서 가솔린 엔진의 연료로 사용시 Gasoline과 Cenox의 혼합비가 대단히 중요한 인자가 될 것으로 사료된다.

GaN Doherty 증폭기의 메모리 효과 보상을 통한 성능개선 (The Improvement of GaN Doherty Amplifier with Memory Effect Compensation)

  • 이석희;조갑제;방성일
    • 대한전자공학회논문지TC
    • /
    • 제49권1호
    • /
    • pp.47-52
    • /
    • 2012
  • 전력증폭기는 기지국의 효율을 결정하는 중요한 요소이며, 효율성 제고를 위하여 GaN증폭소자를 사용한 Doherty 전력증폭기 구조에 대한 연구가 지속되고 있다. Doherty 전력증폭기의 메모리 효과는 선형성과 효율특성과 연관된 동작특성에 큰 영향을 미친다. 본 논문에서는 GaN Doherty 전력증폭기의 전열적인 비선형성 모델링과 전열적 메모리 효과가 GaN Doherty 증폭기의 왜곡형성과 보상에 대하여 연구하였다. GaN Doherty 증폭기의 전열적 메모리 특성을 모델링하기 위하여 순시적으로 소모되는 전력과 순시 접합온도의 정확한 관계식을 정립하였다. 제안된 모델의 파라미터로부터 GaN Doherty 전력증폭기의 비선형왜곡과 전열적 메모리 효과를 보상할 수 있는 전치왜곡선형화기 모델을 설계하였다. 제안된 모델의 성능평가는 37dBm GaN Doherty 전력증폭기와 ADS Tool을 사용하여 왜곡특성 성능개선정도를 검증하였다. 선형화된 GaN 전력증폭기의 2-tone 출력스펙트럼에서 약 16 dB의 왜곡개선효과를 보였다.

캡슐화된 PCM을 이용한 유동층 축열조에서 열전달 특성 연구 (Heat Transfer Chracteristics in a Fluidized bed Heat Storage System Using Encapsulated PCM)

  • 윤영호;한귀영;강용혁;곽희열;이태규;전명석
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.89-94
    • /
    • 1998
  • 태양열 응용을 위한 한 방편으로 캡슐화된 PCM을 이용한 유동층 축열조에서 축열 및 방열과정에서 열전달 특성을 살펴보았다. 유동층 축열조는 원통형으로 높이는 40cm, 직경은 5.0cm 이었다. 축열물질은 무기염의 일종인 sodium acetate 였으며, 이것은 파라핀 왁스와 PMMA 로 코팅되었다. 캡슐화된 PCM의 크기는 약 $2{\sim}3mm$였으며, 용융점은 $58^{\circ}C$였다. 축열 및 방열과정시 유동층 축열조의 시간에 따른 온도분포, 순간 열저장 및 방출 속도를 측정하였으며 이로부터 유동층 축열조의 체적 열전달 계수를 도출하였다. 또한 유동층 축열조의 조업변수인 열전달 유체의 유속, 유입온도에 대한 열전달 계수의 영향도 관찰하였다.

  • PDF

Doherty 증폭기의 열 메모리 효과 모델링과 보상 (Thermal Memory Effect Modeling and Compensation in Doherty Amplifier)

  • 이석희;이상호;방성일
    • 대한전자공학회논문지TC
    • /
    • 제42권9호
    • /
    • pp.49-56
    • /
    • 2005
  • RF 전력증폭기 및 Doherty 전력증폭기의 열 메모리 효과는 변조신호의 대역폭과 동작 전력의 레벨에 따라 민감하게 영향을 미친다. 본 논문에서는 전기적인 비선형성을 정확히 모델링하고 열 메모리 효과가 Doherty 증폭기의 왜곡형성에 어떤 영향을 미치는지에 대해 연구하였다. Doherty 증폭기의 열 메모리 특성을 모델링하기 위하여 순시적으로 소모되는 전력과 순시 접합온도의 정확한 관계식을 정립하여 제안하였다. 제안된 모델의 파라미터는 서로 다른 여기상태에 따라 전력증폭기의 특성이 결정되는데, 트랜지스터의 열 메모리 효과는 대역폭이 넓은 W-CDMA 및 UMTS 시스템에서 충분히 고려되어야 한다. 이러한 열 메모리 효과를 사전왜곡 함수에 적응하여 선형화된 전력증폭기의 출력스펙트럼에서 최대 20 dB정도의 ACLR 개선효과를 보인다. 측정결과는 60W급 LDMOS Doherty 전력증폭기로 측정하였으며, 열 메모리 보상기는 ADS로 검증하였다.

온도 및 절연체에 따른 케이블의 단선시간 특성 해석 (Fusing Time Characteristics Analysis of Cable according to Temperature and Insulator)

  • 김주희;강신동;김재호
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.15-20
    • /
    • 2018
  • This paper describes the fusing time characteristics of Light PVC Sheathed Circular Cord(VCTF) and Tray Frame Retardant(TFR) cables according to increased temperature under over current condition. The experimental equation will be used to determine the validity and reliability of the test results. The over current flowed 3, 5 and 10 times higher than the amount of allowable current using DC power supply with DAQ(Data Acquisition) measurement system. An infrared radiation heater, which was controlled by a variable AC auto transformer, was used to increase the temperature from room temperature to 50, 100 and 150 degrees Celsius. First, two type of cables were analyzed those with different cross-sectional areas with in the same structure and those with different structures with in the same cross-sectional areas. Then, it was determined how fusing time had been influenced according to the cross-sectional areas and different structures, respectively. The cable resistance was increased by joule heating according to increasing temperature. Therefore, the allowable current of cable is decreased. Finally, the fusing time of the cable was decreased due to increased temperatures at current flow, which were 3 times the amount of allowable current. The instantaneous breakdown was observed when current flow was 5 and 10 times over the amount of allowable current. The fusing time is directly affected by the structure of cable insulation.

스노우팩-융설 계산을 위한 에너지수지 알고리즘 (An Energy Budget Algorithm for a Snowpack-Snowmelt Calculation)

  • 이정훈;고경석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권5호
    • /
    • pp.82-89
    • /
    • 2011
  • Understanding snowmelt movement to the watershed is crucial for both climate change and hydrological studies because the snowmelt is a significant component of groundwater and surface runoff in temperature area. In this work, a new energy balance budget algorithm has been developed for melting snow from a snowpack at the Central Sierra Snow Laboratory (CSSL) in California, US. Using two sets of experiments, artificial rain-on-snow experiments and observations of diel variations, carried out in the winter of 2002 and 2003, we investigate how to calculate the amount of snowmelt from the snowpack using radiation energy and air temperature. To address the effect of air temperature, we calculate the integrated daily solar radiation energy input, and the integrated discharge of snowmelt under the snowpack and the energy required to generate such an amount of meltwater. The difference between the two is the excess (or deficit) energy input and we compare this energy to the average daily temperature. The resulting empirical relationship is used to calculate the instantaneous snowmelt rate in the model used by Lee et al. (2008a; 2010), in addition to the net-short radiation. If for a given 10 minute interval, the energy obtained by the melt calculation is negative, then no melt is generated. The input energy from the sun is considered to be used to increase the temperature of the snowpack. Positive energy is used for melting snow for the 10-minute interval. Using this energy budget algorithm, we optimize the intrinsic permeability of the snowpack for the two sets of experiments using one-dimensional water percolation model, which are $52.5{\times}10^{-10}m^2$ and $75{\times}10^{-10}m^2$ for the artificial rain-on-snow experiments and observations of diel variation, respectively.

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

Modified Ammonia Removal Model Based on Equilibrium and Mass Transfer Principles

  • Shanableh, A.;Imteaz, M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1920-1926
    • /
    • 2010
  • Yoon et $al.^1$ presented an approximate mathmatical model to describe ammonia removal from an experimental batch reactor system with gaseous headspace. The development of the model was initially based on assuming instantaneous equilibrium between ammonia in the aqueous and gas phases. In the model, a "saturation factor, $\beta$" was defined as a constant and used to check whether the equilibrium assumption was appropriate. The authors used the trends established by the estimated $\beta$ values to conclude that the equilibrium assumption was not valid. The authors presented valuable experimental results obtained using a carefully designed system and the model used to analyze the results accounted for the following effects: speciation of ammonia between $NH_3$ and $NH^+_4$ as a function of pH; temperature dependence of the reactions constants; and air flow rate. In this article, an alternative model based on the exact solution of the governing mass-balance differential equations was developed and used to describe ammonia removal without relying on the use of the saturation factor. The modified model was also extended to mathematically describe the pH dependence of the ammonia removal rate, in addition to accounting for the speciation of ammonia, temperature dependence of reactions constants, and air flow rate. The modified model was used to extend the analysis of the original experimental data presented by Yoon et $al.^1$ and the results matched the theory in an excellent manner.

모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구 (Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor)

  • 진유인;유경원;민성기;김홍집
    • 한국연소학회지
    • /
    • 제22권2호
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.

7xxx계급 알루미늄 열간 압출재의 평가를 위한 미세조직과 응력-변형률 곡선의 분석 (Charactetristical Analysis of the Microstructure and the Stress-Strain Curves for the Evaluation of 7xxx Series Aluminum Extrudates)

  • 이상용;우영호
    • 열처리공학회지
    • /
    • 제31권6호
    • /
    • pp.307-314
    • /
    • 2018
  • Simple tensile tests and microstructural investigations have been performed on extrudates of high strength aluminum alloys such as 7075, 7021 and 7xxx(Sc) to understand correlation between extruding conditions and extruded properties. Tensile specimens which were taken from different locations at the same cross section of an extrudate were tested at room temperature and with a strain rate of $8.9{\times}10^{-5}/s$. The microstructures according to the locations at the cross section have been observed using optical microscopy and electron back-scattered diffraction (EBSD) mapping to characterize the effect on stress-strain curve. The results could be classified in three types independent of alloying contents and extusion methods. The fine differences in the stress-strain curves were resulted from inhomogenity in the microstructures according to locations of an extrudate which were performed through instantaneous extruding conditions such as temperature, strain rate and strain.