• Title/Summary/Keyword: Instantaneous Reactive Power Control

Search Result 80, Processing Time 0.032 seconds

Electric Arc Furnace Voltage Flicker Mitigation by Applying a Predictive Method with Closed Loop Control of the TCR/FC Compensator

  • Kiyoumarsi, Arash;Ataei, Mohhamad;Hooshmand, Rahmat-Allah;Kolagar, Arash Dehestani
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.116-128
    • /
    • 2010
  • Modeling of the three phase electric arc furnace and its voltage flicker mitigation are the purposes of this paper. For modeling of the electric arc furnace, at first, the arc is modeled by using current-voltage characteristic of a real arc. Then, the arc random characteristic has been taken into account by modulating the ac voltage via a band limited white noise. The electric arc furnace compensation with static VAr compensator, Thyristor Controlled Reactor combined with a Fixed Capacitor bank (TCR/FC), is discussed for closed loop control of the compensator. Instantaneous flicker sensation curves, before and after accomplishing compensation, are measured based on IEC standard. A new method for controlling TCR/FC compensator is proposed. This method is based on applying a predictive approach with closed loop control of the TCR/FC. In this method, by using the previous samples of the load reactive power, the future values of the load reactive power are predicted in order to consider the time delay in the compensator control. Also, in closed loop control, two different approaches are considered. The former is based on voltage regulation at the point of common coupling (PCC) and the later is based on enhancement of power factor at PCC. Finally, in order to show the effectiveness of the proposed methodology, the simulation results are provided.

Performance Analysis of UPQC(Unified Power Quality Conditioner) with Compensation Capability for Voltage Interruption (순간정전에 대한 보상능력을 갖는 UPQC(Unified Power Quality Conditioner)의 성능해석)

  • 김희중;배병열;한병문;설승기;조보형
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.5
    • /
    • pp.279-286
    • /
    • 2003
  • A new UPQC(unified power quality conditioner), which consists of series inverter, shunt inverter, dc/dc converter, and energy storage, is proposed. The proposing UPQC can compensate reactive power, harmonics, voltage sag and swell, voltage unbalance, and voltage interruption. The control strategy for the proposing UPWQC was derived using the instantaneous power method. The performance of proposing system was analyzed by means of the EMTDC/PSCAD simulation and the experimental work with the hardware prototype. The proposing UPQC has the ultimate capability of improving power quality at the point of installation on power distribution systems or industrial power systems and can be utilized for the custom power device in the future distribution system.

Performance Analysis for the UPQC(Unified Power Quality Conditioner) Interconnected to the Distributed Generation System (분산전원 연계형 UPQC(Unified Power Quality Conditioner)의 성능해석)

  • 김희중;배병열;한병문
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.152-160
    • /
    • 2004
  • A novel UPQC(Unified Power Quality Conditioner), which consists of series inverter, shunt inverter, distributed generation system, is proposed. The proposing system can compensate reactive power, harmonics, voltage sag and swell, voltage interruption etc. through the change of paralleling operation mode and islanding operation mode. The control strategy for the proposing system was derived using the instantaneous power method. The performance of proposing system was analyzed by means of the PSCAD/EMTDC simulation and the experimental work with the hardware prototype. The proposing system has the ultimate capability of improving power quality at the point of installation on power distribution systems or Industrial power systems and can be utilized for the custom power device in th future distribution system.

Operation Analysis of Novel UPQC(Unified Power Quality Conditioner) without Series Injection Transformers (직렬주입변압기가 없는 새로운 UPQC(Unified Power Quality Conditioner)의 성능분석)

  • Kim H.J.;Bae B.Y.;Jon Y.S.;Han B.M.;Kim H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.251-255
    • /
    • 2003
  • This paper proposes a novel UPQC(unified power quality conditioner) based on H-bridge modules, isolated through single-phase multi-winding transformers. The dynamic performance of proposed system was analyzed by simulation with EMTDC/PSCAD, assuming that the UPQC is connected with the 22.9kV distribution line. The proposed system can be directly connected to the transmission line without series injection transformers. It has flexibility in expanding the operation voltage by increasing the number of H-bridge modules and can compensate reactive power, harmonics, voltage sag and swell, voltage unbalance. The control strategy for the proposing UPQC was derived using the instantaneous power method. The proposing UPQC has the ultimate capability of improving power quality at the point of installation on power distribution systems and can be utilized for the future distribution system.

  • PDF

Modeling of shunt active power filter using PSCAD/EMTDC

  • Vu, Trung-Kien;Seong, Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.293-295
    • /
    • 2009
  • In this paper, a shunt active power filter (SAPF) has been used to eliminate the harmonic distortion and to improve the power quality of three-phase grid-connected power conditioning system (PCS). The adopted control strategy in active power filter system is based on the instantaneous reactive power theory (P-Q theory). Based on the theoretical analysis, the overall system of three-phase grid-connected with non-linear load PCS has been built and modeled using PSCAD$^{(R)}$/EMTDC$^{TM}$. The simulation results are shown to verify the high effective performance of the implemented SAPF in power system and to verify the reasonableness of the system structure.

  • PDF

CONTROL STRATEGIES FOR SHUNT ACTIVE POWER FILTERS IN DISTORTION SOURCE VOLTAGE SITUATION

  • Yang, Jun;Wang, Zhaoan
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.876-881
    • /
    • 1998
  • The compensation strategy of shunt active power filters is one of the most important link that determine its compensation characteristics. In this paper, a new interpretation of the instantaneous reactive power theory in three-phase circuits was proposed. A compensation strategy (ip, iq mode) was introduced on the basis of the new interpretation. This compensation strategy was compared with other two compensation strategies(P, q mode and UPF mode). When source voltage is distorted, a sinusoidal, the three compensation strategies are equivalent to each other. When source voltage is distorted, a sinusoidal source current may result only by using ip, iq mode. This is the advantage of ip, iq mode. The result is verified by simulation.

  • PDF

Real-Time Implementation of Shunt Active Filter P-Q Control Strategy for Mitigation of Harmonics with Different Fuzzy M.F.s

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.821-829
    • /
    • 2012
  • This research article presents a novel approach based on an instantaneous active and reactive power component (p-q) theory for generating reference currents for shunt active filter (SHAF). Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme. The performance of the SHAF using the p-q control strategy has been evaluated under various source conditions. The performance of the proposed control strategy has been evaluated in terms of harmonic mitigation and DC link voltage regulation. In order to maintain DC link voltage constant and to generate the compensating reference currents, we have developed Fuzzy logic controller with different (Trapezoidal, Triangular and Gaussian) fuzzy M.F.s. The proposed SHAF with different fuzzy M.F.s is able to eliminate the uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/SIMULINK software are presented to support the feasibility of proposed control strategy. To validate the proposed approach, the system is also implemented on a real time digital simulator and adequate results are reported for its verifications.

The Design of UPFC simulator by using EMTDC (EMTDC를 이용한 시뮬레이터급 통합전력제어기의 설계)

  • Jeon, Jin-Hong;Song, Eui-Ho;Kim, Ji-Won;Chun, Yeung-Han;Kim, Hak-Man;Kook, Kyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.374-376
    • /
    • 2001
  • FACTS technology is developed into the sophisticated system technology which combines conventional power system technology with power electronics, micro-process control, and information technology. Its objectives are achieving enhancement of the power system flexibility and maximum utilization of the power transfer capability through improvements of the system reliability, controllability, and efficiency[1]. As a series and shunt compensator, UPFC consists of two inverters with common dc link capacitor bank. It controls the magnitude of shunt bus voltage and real and reactive power flow of transmission line[2]. In this paper, we present the design and control algorithm of UPFC simulator for KERI simulator. As a control algorithm is implemented by digital controller, we consider sample-and-hold of signals In this simulation, we use EMTDC/PSCAD V3.0 software which can simulate instantaneous voltage and current.

  • PDF

PMSM Sensorless Control using a General-Purpose Microcontroller (범용 마이크로콘트롤러를 이용한 PMSM 센서리스 제어)

  • Kang, Bong-Woo;La, Jae-Du;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.227-235
    • /
    • 2011
  • This paper describes a PMSM control algorithm for realizing a low-cost motor drive system using a general purpose microcontroller. The proposed sensorless algorithm consists of the current observer and the sensorless scheme based on instantaneous reactive power. Also the control board system is not the high-cost DSP(digital signal processor) system but the general purpose microcontroller and it allows to reduce the unit cost of the motor system. However the clock frequency of the proposed microcontroller is one-fifths for the clock frequency of the DSP. In addition, the switching frequency must be selected as the lower frequency because of complex mathematic modeling of the sensorless algorithm. the low switching frequency augments the noise of the motor and might make accurate speed control impossible. Thus this paper proposes the optimization method to supplement the drawback of the general purpose microcontroller and the usefulness of the proposed method is verified through the experiment.

Design of Parameters for High Power Static Var Compensator Used Cascade Multilevel Inverter (직렬형 멀티레벨 인버터를 사용한 대용량 무효전력 보상장치의 파라메타 설계)

  • Min, Wan-Ki;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.4
    • /
    • pp.172-178
    • /
    • 2003
  • This paper examines the application of high voltage static var compensator(SVC) with cascade multilevel inverter which employs H-bridge inverter(HBI). This method has the primary advantage that the number of voltage levels can be increased for a given number of semiconductor devices when compared to the conventional control methods. The SVC system is modeled using the d-q transform which calculates the instantaneous reactive power. This model is used to design a controller and analyze the SVC system. From the mathematical model of the system, the design procedures of the circuit parameters L and C are presented in this thesis. To meet the specific total harmonic distortion(THD) and ripple factor of the capacitor voltage, the circuit parameters L and C are designed. Simulated and experimental results are also presented and discussed to validate the proposed schemes.