• 제목/요약/키워드: Installed performance

검색결과 2,743건 처리시간 0.031초

Cation exchange membrane and anion exchange membrane aided electrolysis processes for hypochlorite generation

  • Seong K. Kim;Dong-Min Shin;Ji Won Rhim
    • Membrane and Water Treatment
    • /
    • 제14권2호
    • /
    • pp.55-63
    • /
    • 2023
  • In this study, the influence of different IEMs (ion exchange membranes) to performance of the hypochlorite electrolysis unit with Cl2 recovery stream was investigated. More specifically, Nafion 117-a representative cation exchange membrane (CEM)-and aminated polypheylene oxide (APPO)-an anion exchange membrane (AEM)-were installed in the hypochlorite electrolysis unit, and the performance and the energy efficiency of the units were evaluated and compared. Regardless of whether CEM (Nafion 117) or AEM (APPO) was installed, the rate of hypochlorite generation was increased (by up to 24.3% and 22.2% for Nafion 117 and APPO, respectively) compared with the unit without an IEM. On the other hand, the power efficiency and the optimum operation condition of hypochlorite production units seem to depend on the conductivity and stability of the installed IEM. As the result, between Nafion 117 and APPO, higher performance and efficiency were achieved with Nafion 117, due to excellent conductivity and stability of the membrane.

복합화력 탈질설비 성능향상을 위한 암모니아 주입 그리드의 최적설계 방안에 관한 연구 (A Study for Optimal Design of the AIG to Improve the Performance of DeNOx Facilities Installed in Combined Cycle Plant)

  • 김광추;박만흥;윤준규;임종한
    • 설비공학논문집
    • /
    • 제19권12호
    • /
    • pp.811-820
    • /
    • 2007
  • A Study on the optimal design of the AIG(Ammonia Injection Grid) to improve the performance of DeNOx facilities in the HRSG(Heat Recovery Steam Generator) was performed using the CFD analysis. On the basis of the flow analysis results in the case that the AIG in the HRSG was not installed, the numerical analyses according to the positions of AIG, injection angles of nozzle and the control of ammonia injection quantity were carried out. The standard deviation according to factors was calculated for quantitative comparison. As the results, the AIG in the HRSG should be installed in the position that the uniform flow field shows through the exact flow analysis in the previous of the AIG design and installation. In the case the AIG has already been installed and non uniform flow distribution shows, it is recommended that flow correction device or KoNOx catalyst should be used. Otherwise, the control of ammonia injection angle or the ammonia injection quantity using the velocity profile analysis is demanded to accomplish the optimal performance.

비굴착 지하배수암거 형태별 지하배수 성능 비교분석 (Comparative Study on the Subsurface Drainage Discharge Performance by the Type of Non-Excavation Subsurface Drainage Culvert)

  • 김현태;유전용;정기열;서동욱
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.73-81
    • /
    • 2018
  • In this study, subsurface discharge performance has been studied through theoretical seepage analysis on four types of culverts that can be installed under the condition of non-excavation, such as (a)perforated pipe(${\Phi}50mm$), (b)perforated pipe+horizontal mat (B50cm) (c)perforated pipe+horizontal mat+vertical gravel(B<10cm), (d)perforated pipe+vertical gravel(B<10cm), and existing typical type (e)perforated pipe with gravel (B40, h=40cm) which can be installed by excavation. The analysis results were as follows. i) Subsurface discharge performance per unit (m) was (a)type 56%, (b) 91%, (c) 96%, (d) 76%, respectively, lower than the value of (e)culvert. ii) However, considering that non-excavation culvert can be installed at a spacing of 5m with the installation cost of the existing excavation culvert at the interval of 10m, it was analyzed that unit subsurface discharge(q) of (a)20.2mm/day(110%), (b)32.8(178%), (c)34.6(188%) (d)27.5(149%) in the four types of non-excavation culvert installed at intervals of 5m under the condition of $ k=10^{-4}cm/s$ was much larger than the amount of (e)type 18.5(100%), existing excavation culvert installed at 10m interval. iii) Through the test construction, peak subsurface drainage discharge($q_p$) was 38.4mm/day, which is larger than the value of design criteria and confirmed that it satisfies the analysis results as well. iv) In particular, it was evaluated that (b)perforated pipe+horizontal mat(B50cm) are low cost, high efficiency subsurface drainage culvert type with sufficient drainage performance(178%).

사무용 건물에서 전열교환 환기시스템과 일반공조기의 냉방에너지 비교분석에 관한 연구 (A Comparative Analysis on Cooling Energy of Heat Recovery Ventilator and Air Handling Unit in the Office Building)

  • 장지훈;김현수;어진선;이승복;김병선
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.123-128
    • /
    • 2016
  • Purpose: In order to save the energy consumption of buildings, buildings have been constructed with high performance insulation or airtightness. However, high performance insulation or air tightness has led to a poor indoor air quality. Therefore, HRV(Heat Recovery Ventilator) has received attention to save the energy consumption and insure a good air quality. Because existing research is almost about the performance of HRV in residential buildings, This study analyzed the effect of HRV on cooling energy consumption in commercial office building. Method: This study was proceeded at commercial office building in In-cheon. In order to evaluate the energy consumption of HRV, this study proposed two methods: estimating energy consumption of the room installed AHU(Air Handling Unit) system; estimating energy consumption of the room installed HRV system. Therefore, comparison of two methods was proceeded to evaluate energy performance of each method. Result: As the result of comparison between rooms installed AHU and HRV, the experiment showed that energy consumption of the room installed HRV system is about 22% less than the room of AHU system. This conclusion is considered because the room installed HRV system have maintained temperature well at set point temperature $26^{\circ}C$.

성능에 기반을 둔 목조건축물 화재안전기준 개선방안 (Improvement of Performance based wooden building National Fire Safety Codes)

  • 오택흠;박찬석
    • 대한안전경영과학회지
    • /
    • 제18권2호
    • /
    • pp.83-92
    • /
    • 2016
  • Because National Fire Safety Codes is mixed performance criteria and specification, and it defines the fire extinguish equipment type and standards that need to be installed in a building as one method. Therefore, to fully reflect the fire risk characteristics of the building, such as the wooden building there is a limit. In this study, suggested to the performance criteria drawn methodologies through fire load of wooden buildings studies, theory on performance and performance analysis to fire extinguish equipment of the wooden buildings is installed according to current fire safety codes.

현장 설치 조건을 고려한 발전설비 전기 캐비닛 정착부 앵커의 구조성능 평가 (Structural Performance Evaluation of Anchors for Power Equipment Electrical Cabinets Considering On-Site Installation Conditions)

  • 이상문;정우영
    • 대한토목학회논문집
    • /
    • 제43권6호
    • /
    • pp.709-719
    • /
    • 2023
  • 일반적으로 발전소 내 제어를 담당하는 대부분의 전기 설비는 자립식 캐비닛으로, 후설치 앵커를 사용하여 슬래브에 고정하는 정착 방식이 주로 사용된다. 정착부 앵커의 경우 외력이 작용될 시 모멘트 하중 등에 의한 전도의 위험성에 노출되지만 현행 앵커에 대한 성능 검토는 1축 재료 시험으로만 평가되고 있다. 따라서 본 연구는 현장 설치 조건이 반영된 후설치 앵커의 정적 성능 실험을 통하여 재료 시험과의 성능을 비교하고 앵커의 거동 특성을 분석하는 것이 주목적이다. 실제 캐비닛을 이용하여 실험을 진행하는 것이 타당하지만 경제적, 공간적 제약으로 수행하기에 어려움이 있어 강재 기둥과 받침으로 구성된 실험체로 대체하여 수행하였다. 결과적으로 현장 설치 조건을 반영한 앵커의 인발 성능이 재료 시험 대비 약 10 % 높게 측정되었으며, 앵커의 하중 감소 경향 및 최대 성능이 발현되는 시점도 상이한 것으로 나타났다. 한편, 실험적 연구의 신뢰성을 검증하기 위하여 3D FEM 해석을 수행하였으며, 이를 통해 향후 진동대를 이용한 전기 캐비닛의 구조 성능 평가 시 후설치 앵커에 전달되는 예측 가능한 하중 정보를 제공하고자 한다.

단열셔터를 적용한 구동창호의 에너지 절감 및 야간 난방성능 분석 (Analyses of Energy Savings and Night Heating Performance of a Movable Thermal Insulation Shuttered Window)

  • 이장만;조수;임상훈;송규동
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.150-155
    • /
    • 2013
  • Usually, a window tends to have a lower thermal performance, than that of an ordinary wall. This study analyzes the enhancement of thermal performance of a window, when a Thermal Insulation Shutter is installed. The analyses were conducted at the laboratory, and with a full-scale mockup house, and the U-factor and heating load were examined. The laboratory results show that the U-factor increased by approximately 28%, when a Thermal Insulation Shutter was installed. The temperature difference was about $5^{\circ}C$, and this shows that the Thermal Insulation Shutter enhances the thermal performance of the window, when installed. The mockup house was used to calculate the heating load; the heating load was reduced by more than 41%, and shows that the installation of a Thermal Insulation Shutter is an effective way to reduce heating energy consumption.

Comparisons of performance and operation characteristics for closed- and open-loop passive containment cooling system design

  • Bang, Jungjin;Jerng, Dong-Wook;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2499-2508
    • /
    • 2021
  • Passive containment cooling systems (PCCSs) have been actively studied to improve the inherent safety of nuclear power plants. Hered, we present two concepts, open-loop PCCS (OL-PCCS) and closed-loop PCCS (CL-PCCS), applicable to the PWR with a concrete-type containment. We analyzed the heat-removal performance and flow instability of these PCCS concepts using the GOTHIC code. In both cases, PCCS performance improved when a passive containment cooling heat exchanger (PCCX) was installed in the lower part of the containment building. The OL-PCCS was found to be superior in terms of heat-removal performance. However, in terms of flow instability, the OL-PCCS was more vulnerable than the CL-PCCS. In particular, the possibility of flow instability was higher when the PCCX was installed in the upper part of the containment. Therefore, the installation location of the OL-PCCS should be restricted to minimize flow instability. Conversely, a CL-PCCS can be installed without any positional restriction by adjusting the initial system pressure within the loop, which eliminates flow instability. These results could be used as base data for the thermo-hydraulic evaluation of PCCS in PWR with a large dry concrete-type containment.

기상 환경 모니터링 데이터를 이용한 태양광발전시스템 발전량 성능 분석 (Photovoltaic System Energy Performance Analysis Using Meteorological Monitoring Data)

  • 권오현;이경수
    • 한국태양에너지학회 논문집
    • /
    • 제38권4호
    • /
    • pp.11-31
    • /
    • 2018
  • Nowadays, domestic photovoltaic system market has been expanded and the governmental dissemination policy has been continued. There is only PV system output performance analysis which is called Performance Ratio(PR) analysis. However, there exists many parameters that can affect PV system output. This papers shows the PV system energy performance analysis using meteorological monitoring data. The meteorological monitoring system was installed in the H university and we analyzed the PV system which installed in the H university. We also investigated other three PV systems which located less than 3 kilometers from H university. We evaluated total 4 PV systems through the field survey data, design drawing data and power generation data. Finally, we compared the actual measuring data with the simulation data using PVSYST software.

Comparison with Dispersion Compensation Scheme Using 10 Gbit/s × 40 Channels Wavelength Division Multiplexing Transmission over 323 km of Field Installed Non-Zero Dispersion Shift Fiber

  • Kim, Geun-Young;Park, Soo-Jin;Jeong, Ki-Tae
    • Journal of the Optical Society of Korea
    • /
    • 제10권3호
    • /
    • pp.112-117
    • /
    • 2006
  • We experimentally investigated the transmission characteristics of 400 Gbit/s (10 Gbit/s ${\times}$ 40 channels) WDM signals with 100 GHz channel spacing over 323 km of installed NZ_DSF. The installed fiber has optical properties of 0.28 dB/km attenuation, 4.3 ps/nm/km dispersion, $0.083ps/nm^2/km$ dispersion slope and less than $0.05ps/km^{1/2}$ PMD coefficient. In this experiment, two cases of dispersion compensation schemes, the lumped type and the distributed type, were compared. The results implied that the distributed type dispersion compensation in which dispersion compensation devices are inserted at the end of the each span showed better transmission performance than the lumped one in which dispersion compensation devices are located at the transmitter and receiver sites. From the analysis of the experimental results, we verified that different transmission performance comes from the power penalty induced by XPM in the distributed scheme is lower than the lumped scheme case.