Abstract
In this study, subsurface discharge performance has been studied through theoretical seepage analysis on four types of culverts that can be installed under the condition of non-excavation, such as (a)perforated pipe(${\Phi}50mm$), (b)perforated pipe+horizontal mat (B50cm) (c)perforated pipe+horizontal mat+vertical gravel(B<10cm), (d)perforated pipe+vertical gravel(B<10cm), and existing typical type (e)perforated pipe with gravel (B40, h=40cm) which can be installed by excavation. The analysis results were as follows. i) Subsurface discharge performance per unit (m) was (a)type 56%, (b) 91%, (c) 96%, (d) 76%, respectively, lower than the value of (e)culvert. ii) However, considering that non-excavation culvert can be installed at a spacing of 5m with the installation cost of the existing excavation culvert at the interval of 10m, it was analyzed that unit subsurface discharge(q) of (a)20.2mm/day(110%), (b)32.8(178%), (c)34.6(188%) (d)27.5(149%) in the four types of non-excavation culvert installed at intervals of 5m under the condition of $ k=10^{-4}cm/s$ was much larger than the amount of (e)type 18.5(100%), existing excavation culvert installed at 10m interval. iii) Through the test construction, peak subsurface drainage discharge($q_p$) was 38.4mm/day, which is larger than the value of design criteria and confirmed that it satisfies the analysis results as well. iv) In particular, it was evaluated that (b)perforated pipe+horizontal mat(B50cm) are low cost, high efficiency subsurface drainage culvert type with sufficient drainage performance(178%).