• Title/Summary/Keyword: Installation depth

Search Result 364, Processing Time 0.022 seconds

A Study on the Water Quality Improvement in Semi-closed Sea Area Using Solar Powered Circulators (태양광 물 순환장치 가동에 의한 반폐쇄성 수역의 수질 변화)

  • Kim, Deok-Gil;Lee, Eun-Kyeong;Kim, Mu-Chan;Song, Sung-Kyu;Cho, Kwang-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.257-262
    • /
    • 2012
  • This study was conducted to verify the performance of the solar water circulation apparatus that was installed in a semi-closed sea area of Tongyeong to improve the water quality through removing thermocline and oxygen depleted water mass, and to prevent the occurrence of red tides caused by eutrophication. From 8 weeks of experiments, we found that the thermocline in the semi-closed sea area has been removed gradually after installation of the apparatus. The initial temperature of surface and bottom was $27.9^{\circ}C$ and $23.8^{\circ}C$, respectively and it was changed to $22.1^{\circ}C$ in both depth. In case of DO concentration, there was a big gap between surface (5.49 mg/L) and bottom (2.61 mg/L) and was an oxygen depleted water mass in the bottom area at initial. However DO concentration in bottom layer has increased gradually after operation (6.19 mg/L) and the oxygen depleted water mass has removed. Due to the effects of seasonal variation and the operation of the solar water circulation apparatus for 8 weeks, COD concentration decreased from 5.61 mg/L to 2.36 mg/L in surface area, and from 6.08 mg/L to 1.73 mg/L in bottom area. Dissolved inorganic nitrogen concentration also decreased from 0.135 mg/L to 0.050 mg/L in surface area, and from 0.076 mg/L to 0.051 mg/L in bottom area. This research was conducted from July to September, and it might be possible that the variation of water quality was affected by both seasonal variation and the operation of the water circulation apparatus. Hence a further research is required to verify the performance of the water circulation apparatus itself and to monitor dissolved inorganic nitrogen and phosphorous concentrations as well as Chl-a.

How effective has the Wairau River erodible embankment been in removing sediment from the Lower Wairau River?

  • Kyle, Christensen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.237-237
    • /
    • 2015
  • The district of Marlborough has had more than its share of river management projects over the past 150 years, each one uniquely affecting the geomorphology and flood hazard of the Wairau Plains. A major early project was to block the Opawa distributary channel at Conders Bend. The Opawa distributary channel took a third and more of Wairau River floodwaters and was a major increasing threat to Blenheim. The blocking of the Opawa required the Wairau and Lower Wairau rivers to carry greater flood flows more often. Consequently the Lower Wairau River was breaking out of its stopbanks approximately every seven years. The idea of diverting flood waters at Tuamarina by providing a direct diversion to the sea through the beach ridges was conceptualised back around the 1920s however, limits on resources and machinery meant the mission of excavating this diversion didn't become feasible until the 1960s. In 1964 a 10 m wide pilot channel was cut from the sea to Tuamarina with an initial capacity of $700m^3/s$. It was expected that floods would eventually scour this 'Wairau Diversion' to its design channel width of 150 m. This did take many more years than initially thought but after approximately 50 years with a little mechanical assistance the Wairau Diversion reached an adequate capacity. Using the power of the river to erode the channel out to its design width and depth was a brilliant idea that saved many thousands of dollars in construction costs and it is somewhat ironic that it is that very same concept that is now being used to deal with the aggradation problem that the Wairau Diversion has caused. The introduction of the Wairau Diversion did provide some flood relief to the lower reaches of the river but unfortunately as the Diversion channel was eroding and enlarging the Lower Wairau River was aggrading and reducing in capacity due to its inability to pass its sediment load with reduced flood flows. It is estimated that approximately $2,000,000m^3$ of sediment was deposited on the bed of the Lower Wairau River in the time between the Diversion's introduction in 1964 and 2010, raising the Lower Wairau's bed upwards of 1.5m in some locations. A numerical morphological model (MIKE-11 ST) was used to assess a number of options which led to the decision and resource consent to construct an erodible (fuse plug) bank at the head of the Wairau Diversion to divert more frequent scouring-flows ($+400m^3/s$)down the Lower Wairau River. Full control gates were ruled out on the grounds of expense. The initial construction of the erodible bank followed in late 2009 with the bank's level at the fuse location set to overtop and begin washing out at a combined Wairau flow of $1,400m^3/s$ which avoids berm flooding in the Lower Wairau. In the three years since the erodible bank was first constructed the Wairau River has sustained 14 events with recorded flows at Tuamarina above $1,000m^3/s$ and three of events in excess of $2,500m^3/s$. These freshes and floods have resulted in washout and rebuild of the erodible bank eight times with a combined rebuild expenditure of $80,000. Marlborough District Council's Rivers & Drainage Department maintains a regular monitoring program for the bed of the Lower Wairau River, which consists of recurrently surveying a series of standard cross sections and estimating the mean bed level (MBL) at each section as well as an overall MBL change over time. A survey was carried out just prior to the installation of the erodible bank and another survey was carried out earlier this year. The results from this latest survey show for the first time since construction of the Wairau Diversion the Lower Wairau River is enlarging. It is estimated that the entire bed of the Lower Wairau has eroded down by an overall average of 60 mm since the introduction of the erodible bank which equates to a total volume of $260,000m^3$. At a cost of $$0.30/m^3$ this represents excellent value compared to mechanical dredging which would likely be in excess of $$10/m^3$. This confirms that the idea of using the river to enlarge the channel is again working for the Wairau River system and that in time nature's "excavator" will provide a channel capacity that will continue to meet design requirements.

  • PDF

A Preliminary Study on Domestic Embracement and Development Plan Regarding UNESCO World Heritage Programme (유네스코 세계유산 제도의 우리나라 문화재 정책에의 수용과 발전방안에 대한 시론적 연구)

  • Kang, Kyung Hwan;Kim, Chung Dong
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.56-85
    • /
    • 2010
  • UNESCO World Heritage Programme was introduced following the adoption of Convention Concerning the Protection of the World Cultural and Natural Heritage by the General Conference of UNESCO in 1972 in order to protect cultural and natural heritage with superb value for all mankind. Despite its short history of less than 40 years, it has been evaluated as one of the most successful of the cultural area projects of UNESCO with 890 world heritage registered worldwide. For systematic protection management of World Heritage, UNESCO, through systemization of registration, emphasis on the importance of preservation management plan, institutionalization of monitoring, and operation of World Heritage Fund, has utilized World Heritage Programme not just as a means of listing excellent cultural properties, but as a preservation planning tool, and accordingly, such policies have had a significant influence on the cultural heritage protection legislations of numerous nations. Korea has ratified World Heritage Convention in 1988, and with the registration of the Royal Tombs of the Joseon Dynasty in 2009, it has 9 World Heritage Sites. Twenty years have passed since Korea joined the World Heritage Programme. While World Heritage registration contributed to publicity of the uniqueness and excellence of Korean cultural properties and improvement of Korea's national culture status, it is now time to devise various legislative/systematic improvement means to reconsider the World Heritage registration strategy and establish a systematic preservation management system. While up until now, the Cultural Properties Protection Law has been amended to arrange for basic rules regarding registration and protection of World Heritage Sites, and some local governments have founded bodies exclusive for World Heritage Site management, a more fundamental and macroscopic plan for World Heritage policy improvement must be sought. Projects and programs in each area for reinforcement of World Heritage policy capacity such as: 1) Enactment of a special law for World Heritage Site preservation management; 2) enactment of ordinances for protection of World Heritage Sites per each local government; 3) reinforcement of policies and management functionality of Cultural Heritage Administration and local governments; 4) dramatic increase in the finances of World Heritage Site protection; 5) requirement to establish plan for World Heritage Site preservation protection; 6) increased support for utilization of World Heritage Sites; 7) substantiation and diversification of World Heritage registration; 8) sharing of information and experiences of World Heritage Sites management among local governments; 9) installation of World Heritage Sites integral archive; 10) revitalization of citizen cooperation and resident participation; 11) training specialized resources for World Heritage Sites protection; 12) revitalization of sustainable World Heritage Sites tourism, must be selected and promoted systematically. Regarding how World Heritage Programme should be domestically accepted and developed, the methods for systemization, scientific approach, and specialization of World Heritage policies were suggested per type. In the future, in-depth and specialized researches and studies should follow.

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.