• Title/Summary/Keyword: Instability Condition

Search Result 503, Processing Time 0.028 seconds

KSR-III 액체 로켓엔진 설계점 연소시험

  • Kim, Seung-Han;Cho, Gyu-Sik;Han, Yeoung-Min;Seo, Seong-Hyun;Moon, Il-Yoon;Lee, Kwang-Jin;Kim, Jong-Kyu;Seol, Woo-Seok;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.164-170
    • /
    • 2003
  • KSR-III engine with film-cooled baffle was tested. The purpose of this test is to verify the effect of ablative baffle on avoiding combustion instability which occurred in the acoustic cavity case. The engine had expansion ratio of 5.04 and the test condition was design condition(oxidizer mass flow rate 42.04, and fuel 17.95 kg/s). In the test, combustion instability did not occur. So, the effect of film-cooled baffle on avoiding combustion instability was verified.

  • PDF

Dynamic Instability of Elastically Restrained Beams under Distributed Tangential Forces (분포접선력을 받는 탄성지지된 보의 동적 불안정)

  • 류봉조;김인우;이규섭;임경빈;최봉문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.140-147
    • /
    • 1998
  • The dynamic behavior of elastically restrained beams under the action of distributed tangential forces is investigated in this paper. The beam, which is fixed at one end, is assumed to rest on an intermediate spring support. The governing equations of motion are derived from the energy expressions, and the finite element formulation is employed to calculate the critical distributed tangential force. Jump phenomena for the critical distributed tangential force and instability types are presented for various spring stiffnesses and support positions. Stability maps are generated by performing parametric studies to show how the distributed tangential forces affect the frequencies and the stability of the system considered. Through the numerical simulations, the following conclusioils are obtained: (i) Only flutter type instability exists for the dimensionless spring stiffness K $\leq$ 97, regardless of the position of the spring support. (ii) For the dimensionless spring stiffness K $\leq$ 98, the transition from flutter to divergence occurs at a certain position of the spring support, and the transition position moves from the free end to the free end of the beam as the spring stiffness increases. (iii) For K $\leq$ 10$^{6}$ the support condition can be regarded as a rigid support condition.

  • PDF

The Relationship between Income Instability and Psychological Condition of Real Estate Price Changes and Willingness to Adjust Real Estate Holding Ratio (소득의 불안정성과 부동산가격변동에 대한 태도 및 부동산보유비중 조정의향 간의 관련성)

  • Lee, Chan-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.199-205
    • /
    • 2020
  • As many government policies have been announced today regarding real estate, especially housing, interest in prices in the housing market has increased significantly. In this study, I would like to present the direction of government policies by analyzing the relationship among income instability, the psychological condition of real estate price changes and willingness to adjust real estate holding ratio. First, major variables were extracted through the prior study review, and using a survey, data were collected and path analysis was conducted. According to the analysis, the current income instability had a negative impact on the psychological condition of real estate price changes, and a positive influence on the willingness to adjust real estate holding ratio, but the psychological condition of real estate price changes did not have a statistically significant impact on the willingness to adjust real estate holding ratio. Thus, the difference analysis was conducted between groups by dividing the ages and the number of dependents respectively. According to the analysis, the impact of income instability and psychological condition of real estate price changes on willingness to adjust real estate holding ratio differed between groups divided by ages and number of dependents. The results of this analysis will help the government to establish real estate policies and help each household to use the analysis as basic data when they make a decision about real estate. On the other hand, this study has limitations that have only been conducted cross-sectional analysis and analyzing time series changes and differences in perception between regions are going to be conducted in a future study.

Controlling Low Frequency Instability in Hybrid Rocket Combustion With Swirl Injection and Fuel Insert (스월 분사와 삽입연료에 의한 하이브리드 로켓 연소의 저주파수 연소불안정 조절)

  • Hyun, Wonjeong;Lee, Chanjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.139-146
    • /
    • 2021
  • In hybrid rocket combustion, the oxidizer swirl injection is frequently used to stabilize the combustion as the rotational velocity component affects the boundary layer flow. However, as the swirl strength increases, a problem arises where the combustion performance changes too much. Thus, this study attempts to control the low frequency instability while minimizing the change in combustion performance by adapting attenuated swirl injection with fuel insert used in reference [7]. To this end, a series of experimental tests were performed by varying swirl intensity and the location of the fuel insert. In the tests, the occurrence of combustion instability and combustion performance were closely monitored. The results confirmed that combustion instability was successfully suppressed at the condition of the swirl angle 6 degree and the location of fuel insert 310 mm. And, the changes in combustion pressure, O/F ratio, and fuel regression rate were found as minimal compared to the baseline case. Also the results reconfirmed that the formation of positive coupling between two high frequency oscillations in 500 Hz band, combustion pressure(p') and heat release oscillation(q'), is the necessary and sufficient condition of the occurrence of low frequency instability.

On the Origin of Oscillatory Instabilities in Diffusion Flames (확산화염의 진동불안성의 기원에 대해서)

  • Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.25-33
    • /
    • 2005
  • Fast-time instability is investigated for diffusion flames with Lewis numbers greater than unity by employing the numerical technique called the Evans function method. Since the time and length scales are those of the inner reactive-diffusive layer, the problem is equivalent to the instability problem for the $Li\tilde{n}\acute{a}n#s$ diffusion flame regime. The instability is primarily oscillatory, as seen from complex solution branches and can emerge prior to reaching the upper turning point of the S-curve, known as the $Li\tilde{n}\acute{a}n#s$ extinction condition. Depending on the Lewis number, the instability characteristics is found to be somewhat different. Below the critical Lewis number, $L_C$, the instability possesses primarily a pulsating nature in that the two real solution branches, existing for small wave numbers, merges at a finite wave number, at which a pair of complex conjugate solution branches bifurcate. For Lewis numbers greater than $L_C$, the solution branch for small reactant leakage is found to be purely complex with the maximum growth rate found at a finite wave number, thereby exhibiting a traveling nature. As the reactant leakage parameter is further increased, the instability characteristics turns into a pulsating type, similar to that for L < $L_C$.

  • PDF

The effect of ion to electron mass ratio on Ion beam driven instability and ion holes by PIC simulation

  • Hong, Jin-Hy;Lee, En-Sang;Min, Kyoung-Wook;Parks, George.K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.92.2-92.2
    • /
    • 2012
  • Previous simulations posed a problem that they used reduced ion to electron mass ratios to save computation time. It was assumed that ion and electron dynamics are sufficiently separated, but it was not clearly verified. In this study, we examine the effect of ion to electron mass ratios on the generation of ion holes by ion beam driven instability. Ion holes are generated via electron holes in an applied electric field with the given initial condition. First, the ion acoustic instability is excited and nonlinearly develops. After the ion acoustic instability nonlinearly develops, the ion two-stream instability is excited and develops into ion holes. This implies that the previously suggested ion beam driven instability is strongly affected by the coupling between ions and electrons and the ion to electron mass ratio is important on the development of the instability. The energy transition and detail variation is different as reduced mass ratio under the same observation value based on FAST satellite. Although, the parameters are rescaled by conserving the kinetic energy to obtain the proper results, the nonlinear evolution is not perfectly identical.

  • PDF

An Experimental Study on Combustion Instability Mechanism in a Dump Gas Turbine Combustor (모형 가스터빈 연소기내 연소불안정성에 대한 실험적 연구)

  • Lee, Youn-Joo;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.853-858
    • /
    • 2001
  • The knowledge of flame structure is essential for control of combustion instability phenomena. Some results of an experimental study on mechanism of naturally occurring combustion oscillations with a single dominant frequency are presented. Tests were conducted in a laboratory-scale dump combustor at atmospheric pressure. Sound level meter was used to track the pressure wave inside the combustor. The observed instability was a longitudinal mode with a frequency of $\sim341.8Hz$. Instability map was obtained at the condition of inlet temperature of $360^{\circ}C$, mean velocities of $8.5\sim10.8m/s$ and well premixed mixture. It showed that combustion instability was susceptible to occur in the lean conditions. In this study, unstable flame was observed from stoichiometric to 0.7 in overall equivalence ratio. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various mean velocities. As mean velocity is increased, the flame grows and global heat release was changed. Due to these effects, combustion instability can be maintained at more lean air-fuel ratio. Also, these results give an insight to the controlling mechanism for an increasing heat release at maximum pressure.

  • PDF

Combustion Instability of Gas Turbine with Segmented Dynamic Thermo-Acoustic Model under Load Follow-Up (이산형 열-음향 모델을 이용한 부하 변동시 가스터빈 연소 불안정 특성)

  • JEONG, JIWOONG;HAN, JAEYOUNG;JEONG, JINHEE;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.538-548
    • /
    • 2018
  • The thermo-acoustic instability in the combustion process of a gas turbine is caused by the interaction of the heat release mechanism and the pressure perturbation. These acoustic vibrations cause fatigue failure of the combustor and decrease the combustion efficiency. This study is to develop a segmented dynamic thermo-acoustic model to understand combustion instability of gas turbine. Therefore, this study required a dynamic analysis rather than static analysis, and developed a segmented model that can analyze the performance of the system over time using the Matlab/Simulink. The developed model can confirm the thermo-acoustic combustion instability and exhaust gas concentration in the combustion chamber according to the equivalent ratio change, and confirm the thermo-acoustic combustion instability for the inlet temperature and the load changes. As a result, segmented dynamic thermo-acoustic model has been developed to analyze combustion instability under the operating condition.

Effect of Ankle Taping Type and Jump Height on Balance during Jump Landing in Chronic Ankle Instability

  • Kim, Mikyoung;Kong, Byungsun;Yoo, Kyungtae
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.2
    • /
    • pp.2077-2089
    • /
    • 2020
  • Background: Chronic ankle instability is a common injury that decreases balance and negatively affects functional movements, such as jumping and landing. Objectives: To analyze the effect of taping types and jump heights on balance with eyes open and closed during jump landings in chronic ankle instability. Design: Within-subject design. Methods: The study involved 22 patients with chronic ankle instability. They performed both double-leg and single-leg drop jump landings using three conditions (elastic taping, non-elastic taping, and barefoot) on three different jump platforms (30, 38, and 46 cm). Balance was measured using the Romberg's test with eyes open and closed. Results: Interaction effect was not statistically significant. Balance with eyes open and closed was significantly improved in both the elastic taping and non-elastic taping conditions compared to the barefoot condition. There was no significant difference according to the jump height. Conclusion: Individuals with chronic ankle instability demonstrated increased balance ability with eyes open and closed when jump landing. Elastic taping and non-elastic taping on the ankle joint can positively affect balance during landing in individuals with chronic ankle instability.

A Study on Synchronously Whirling Motion of Hydrodynamic Journal Bearings (저널 베어링의 동기화된 선회 운동에 관한 연구)

  • Kim, Gyeong-Ung;No, Byeong-Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1432-1437
    • /
    • 2001
  • In this paper, a control algorithm which is synchronously excitating the bearing with whirl speed of rotor is employed to suppress the whirl instability and unbalance response of the rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than a conventional analysis with the Reynolds condition. The stabilities and unbalance responses of the rotor-bearing system are investigated for various control gains and phase differences between the bearing and journal motion. It is shown that the unbalance response of the system can be greatly improved by synchronous control of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, for given operating condition. It is also found that the onset speed of the instability can be greatly increased by synchronous control of the bearing.