• Title/Summary/Keyword: Inspection frequency

Search Result 496, Processing Time 0.028 seconds

A Relationship between the Noise and Vibration of a Wheelset and the Irregularity of a High-speed Railway: A Preliminary Research (윤축의 소음 및 진동과 고속선 궤도불규칙간의 관계에 대한 기초연구)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.409-417
    • /
    • 2009
  • This paper is focused on a relationship between the noise and vibration of a wheelset and the railway irregularity of a high speed railway using a time-varying frequency transform for a preliminary research of the railway condition monitoring by an in-service high-speed railway vehicle. Generally, the monitoring has been performed by a special railway inspection vehicle or industrial engineers for railway maintenance. However, they have been limited at night due to the in-service high-speed railway vehicles, and too slow to monitor all of the section. To solve this problem, the monitoring should be performed by an in-service high-speed railway vehicle. For the research, the noise and vibration of a wheelset are utilized, because they are closely related to the railway condition. They are measured by using some microphones and accelerometers, and stored in an on-board data acquisition system. The signals are post-processed by a time-varying frequency analysis and compared with the result of a railway geometry and profile measurement system. From the comparison, it is able to observe the relationship between the noise and vibration of a wheelset and the irregularity of a high-speed railway. Also, some distinct frequency components are observed, which are not observed in the railway geometry and profile.

  • PDF

Deep learning of sweep signal for damage detection on the surface of concrete

  • Gao Shanga;Jun Chen
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Nondestructive evaluation (NDE) is an important task of civil engineering structure monitoring and inspection, but minor damage such as small cracks in local structure is difficult to observe. If cracks continued expansion may cause partial or even overall damage to the structure. Therefore, monitoring and detecting the structure in the early stage of crack propagation is important. The crack detection technology based on machine vision has been widely studied, but there are still some problems such as bad recognition effect for small cracks. In this paper, we proposed a deep learning method based on sweep signals to evaluate concrete surface crack with a width less than 1 mm. Two convolutional neural networks (CNNs) are used to analyze the one-dimensional (1D) frequency sweep signal and the two-dimensional (2D) time-frequency image, respectively, and the probability value of average damage (ADPV) is proposed to evaluate the minor damage of structural. Finally, we use the standard deviation of energy ratio change (ERVSD) and infrared thermography (IRT) to compare with ADPV to verify the effectiveness of the method proposed in this paper. The experiment results show that the method proposed in this paper can effectively predict whether the concrete surface is damaged and the severity of damage.

Domestic radio waves propagate management and control systems investigate the system status (국내 전파관리제도 및 전파관리 시스템 현황에 대한 조사)

  • Shin, Hyun-Shin;Kim, Sung-Hong;Seok, Gyeong-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.5
    • /
    • pp.441-450
    • /
    • 2016
  • The International Telecommunications Union(: ITU) Radio Regulations(: RR) and in which is defined as the frequency of electromagnetic waves below 3000GHz spread in space without artificial guidance, our country also follows the international definition. As radio waves are electromagnetic waves spreading in space without artificial induction means having a frequency within the range set by the ITU. Frequency distribution for dual-work is to inde 300GHz, among the divided frequency is our daily or less than 90% of the frequency band is in contact saenghwalyong 3GHz. Propagation, but can occur indefinitely without depleting that anyone can create only gatchumyeon transmission equipment, if the radio frequency to use at the same time and space, the soul is the interference occurs is not available radio resources. Due to the physical finiteness used in our country for the first time on such a propagation laws enacted in 1961 and to the state radio resource management, and rules to be used for propagation only if granted the rights.

Evaluation of Stiffness Structure and Grouting Efficiency beneath the Precast Slab Track by Elastic Wave Tests (탄성파시험에 의한 프리캐스트 슬래브궤도의 강성구조와 충전성능 평가)

  • Lee, Il-Wha;Joh, Sung-Ho;Jang, Seung-Yup;Kang, Youn-Suk;Han, Sung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1303-1308
    • /
    • 2007
  • Recently, precast concrete tracks are replacing ballast track for efficient and economic maintenance of track. Precast concrete railroad tracks are manufactured in factory, and transported to railroad construction site for installation. Therefore, quality of precast concrete track itself should be sufficiently good. On the contrary to the convenient manufacturing of precast concrete track, the installation of a precast concrete track requires careful steps. Typically, a precast concrete track is placed on an approximately 15-cm thick lean concrete layer. A mortar is filled between lean concrete layer and precast concrete track to adjust the sloping angle of a precast concrete track for a safe train operation at a curvy section. Then, the use of filled mortarproduces a void underneath a precast concrete track, which is harmful to structural safety of a precast concrete track undercyclic loading. Therefore, it is essential to make sure that there is no void left beneath a precast concrete track after mortar filling. In the continuous resonance method, the amplitude of frequency response measured using an instrumented hammer and an accelerometer is plotted against a pseudo-depth, which is half of the wave velocity divided by frequency. The frequency response functions are measured at consecutive measurement locations, 6-cm interval between measurement points, and then combined together to generate a 2-D plot of frequency response. The sections with strong reflections or large amplitude of frequency response are suspicious areas with internal voids and unfilled areas. The 2-D frequency response plot was efficient in locating problematic sections just by examining the color shade of a visualized plot in 2-D format. Some of the problematic sections were drilled to make a visual inspection of mortar filling. The visual image of interface between mortar and precast concrete track was verified using the validity of the continuous resonance technique adopted in this research.

  • PDF

Consideration on Rating Method for Heavy Impact Sound Taking Account of the Characteristics of Floor Vibration and Impact Sources (바닥 진동 거동 및 충격원 특성을 고려한 바닥 중량 충격음 평가방법 고찰)

  • Lee, Min-Jung;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.69-79
    • /
    • 2017
  • The purpose of this study is to reconsider the rating method for the floor impact sound insulation performance in current criterion. Although there are some arguments about proper standard heavy impact source with reproducibility of actual impact source in residence building, bang machine is adopted as the only standard heavy impact source in domestic criterion. To inspect the rating methods of evaluation criteria, this study conducted vibration test for both of standard heavy impact sources and actual impact sources. Using the test results, the floor impact sound insulation performance levels were assessed by each of several criteria. In addition, low frequency noise beyond current criteria was evaluated. Consequently, the floor impact sound levels have different performance levels according to adopted criteria, and measured floor impact sounds are bound to annoy the neighbors in the low frequency range. Current criteria does not consider the spectrum characteristics of floor impact sound according to impact sources and low frequency noise. This may cause the difference between the floor impact sound insulation performance level and human perception. Thus current criterion needs to be complemented to reflect the spectrum characteristics of floor impact sound levels according to impact sources and sound pressure levels in low frequency range.

Calculation of Deflection Using the Acceleration Data for Concrete Bridges (가속도 계측 자료를 이용한 콘크리트 교량의 처짐 산정)

  • Yun, Young Koun;Ryu, Hee Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.92-100
    • /
    • 2011
  • This paper describes a numerical modeling for deflection calculation using the natural frequency response that is measured acceleration response for concrete bridges. In the formulation of the dynamic deflection, the change amounts and the transformed responses about six kinds of free vibration responses are defined totally. The predicted response can be obtained from the measured acceleration data without requiring the knowledge of the initial velocity and displacement information. The relationship between the predicted response and the actual deflection is derived using the mathematical modeling that is induced by the process of a acceleration test data. In this study, in order to apply the proposed response predicted model to the integration scheme of the natural frequency domain, the Fourier Fast Transform of the deflection response is separated into the frequency component of the measured data. The feasibility for field application of the proposed calculation method is tested by the mode superposition method using the PSC-I bridges superstructures under several cases of moving load and results are compared with the actually measured deflections using transducers. It has been observed that the proposed method can asses the deflection responses successfully when the measured acceleration signals include the vehicle loading state and the free vibration behavior.

The Survey on Pesticide Residues in Vegetables Collected In Seoul (서울지역 유통 채소류의 잔류농약 조사)

  • Jang, Mi-Ra;Moon, Hyun-Kyung;Kim, Tae-Rang;Yuk, Dong-Hyun;Kim, Eun-Hee;Hong, Chae-Kyu;Choi, Chae-Man;Hwang, In-Sook;Kim, Jung-Hun;Kim, Moo-Sang
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.114-124
    • /
    • 2011
  • The characteristics of pesticide residues by multiresidue analysis method using GC, HPLC and GC-MSD were examined for 18,069 numbers of 91 kinds of vegetables in Seoul from 2007 to 2009. Detection rates of pesticide residues were 11.2% in 2007, 8.5% in 2008 and 12.0% in 2009, respectively, and the excess rates of Maximum Residue Limits (MRLs) showed a declining tendency as 4.6% in 2007, 2.8% in 2008 and 2.1% in 2009, respectively. The pesticides exceeding MRLs were 43 ingredients in 2007, 30 ingredients in 2008 and 36 ingredients in 2009, respectively. The frequencies of pesticides exceeding MRLs were 71 of azoxystrobin in 2007, 29 of procymidone in 2008, 24 of endosulfan in 2009, respectively. The excess rate of mustard green for MRLs in comparison with sample numbers was the highest among vegetables analyzed more than 10 cases each year. As a result of comparing annually pesticide residues about pesticide ingredients showed high frequency rates for pesticide detection, there was a statistical significance for the detection quantities of diazinon, endosulfan, paclobutrazol and procymidone.

Monitoring of Residual Pesticides in Local Foods Distributed in the Western Gyeonggi Province (경기서부지역 로컬푸드 잔류농약 실태조사)

  • Mi-Hui Son;Jae-Kwan Kim;You-Jin Lee;Ji-Eun Kim;Eun-Jin Baek;Byeong-Tae Kim;Seong-Nam Lee;Myoung-Ki Park;Yong-Bae Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.489-495
    • /
    • 2023
  • In this study, we detected the presence of residual pesticides in 341 agricultural products collected from local food outlets in western Gyeonggi Province. Residual pesticides were detected in 105 (30.8%) samples. Six samples exceeded the legal limits for residual pesticides, resulting in a non-compliance rate of 1.8%, which was slightly higher than the average non-compliance rate of 1.4% in the last three years. Among the tested agricultural products, only fruits and vegetables were found to have pesticide residues, with 24 of 34 fruits (a detection rate of 70.6%) and 81 of 277 vegetables (a detection rate of 29.2%) testing positive. In total, 59 types of pesticides, including acetamiprid, which was detected 208 times, were detected and had a detection range of 0.01-2.38 mg/kg. Among the 105 agricultural products containing pesticide residues, a single pesticide was detected in 62 samples (59%) and two or more pesticides were detected in 43 samples (41%). In particular, 14 pesticides were detected in the same sample of peaches; dinotefuran was detected 21 times. Upon examining the toxicity of the detected pesticides, Class III pesticides (moderate toxicity) were detected 44 times (21.2%) and Class IV pesticides (low toxicity) were detected 164 times (78.8%). Class I, II, and III pesticides with fish toxicity were detected 68 (32.7%), 14 (6.7%), and 126 times (60.6%), respectively. Upon examining the exposure to high-frequency pesticide components detected five or more times, the hazard index was found to be ≤2.8%. Accordingly, the hazard of residual pesticides based on dietary intake was deemed insignificant.

Vibration Analysis on the Inspection Equipment Frame of a Semiconductor Test Handler Picker (반도체 테스트 핸들러 픽커 검사장비 프레임에 대한 진동해석)

  • Kim, Young-Choon;Kim, Young-Jin;Kook, Jeong-Han;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4815-4820
    • /
    • 2014
  • As semiconductor chips are on a small scale, large content and high integratation, it is essential to develop the device of pick and place at the system of the semiconductor test handler to ensure its high precision and durability. In this study, inspection equipment frame model of a semiconductor test handler picker was investigated by vibration analysis with the property of the natural frequency and harmonic response. As 3 kinds of analysis case models, the device of pick and place was located at the left side (Case 1), the center (Case 2) and the right side (Case 3) of the upper guideline. The range of natural frequencies until the 6th order on this frame model ranges from 80Hz to 500Hz. As the analysis of the harmonic response when the frame is resonant, Case 2 showed the maximum equivalent stress of 52.802 MPa more than Cases 1 or 3. Case 2 was the most intensive among the three cases. Using the analysis result of this study, the design of the frame model, which can be applied to the safe working environment of the system is believed to be possible.

Study on characteristics of noncontact vibrating displacement sensor (비접촉식 진동 변위센서의 특성에 관한 연구)

  • Cho, C.W.;Cho, S.T.;Yang, K.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.13-18
    • /
    • 2011
  • This thesis is about the result of conducting a specific experiment for the development of noncontact vibration displacement sensor for measuring the spindle vibration that is used for conditional monitoring of machinery. One should be careful when using the eddy current type displacement sensor because the sensitivity of it is different according to the quality of the material. While the probe used for nondestructive inspection adopts the effect of transmitting the material by using the high frequency domain, the eddy current type displacement sensor uses the lower frequency of around 1MHz. Also, while the nondestructive probe uses the method of enhancing output by using the resonance zone, the vibration displacement sensor utilizes the stable zone by avoiding the resonance zone. Since the oscillator of the converter uses the "L" element as Probe, its characteristic changes with the variation of a relevant impedance. In other words, if the length of Probe's Cable gets extended (Impedance increase), the sensitivity declines accordingly. The effect of surrounding temperature was small, but the influence of the quality of Sensor Coil used was high. Moreover, following an experimental demonstration of the phenomenon where the sensitivity decreases as the frequency of the tested material increases from a frequency response test, the maximum frequency that could be measured was approximately 1KHz. It was noted that the degree of precision could be maintained by using the gap of the probe in the linear zone at the installation site.