• Title/Summary/Keyword: Inspection frequency

Search Result 489, Processing Time 0.023 seconds

Feasibility Study of Remote Field Eddy Current Testing for Nonmagnetic Steam Generator Tubes (비자성 증기발생기 전열관의 원격장와전류 탐상 가능성 연구)

  • Shin, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.518-525
    • /
    • 2001
  • As steam generator (SG) tubes have aged, new and subtle flaws have appeared. Most of them start growing from outside the tubes. Since signals from outer diameter (OD) defects are very weak compared to those from inner diameter (ID) defects in the conventional eddy current testing due to skin effect, this paper studies the feasibility of using remote field eddy current (RFEC) technique, which has shown equal sensitivity to ID and OD defects in the ferromagnetic pipe inspection. Finite element modeling studies show that the operating frequency needs to be increased up to a few hundred kHz in order for RFEC effects to occur in the nonmagnetic SG tube. The proper distance between exciter and sensor coils is also found to be about 1.5 OD, which is half the distance used in the ferromagnetic pipe inspection. Defect signals obtained by the designed RFEC probe show equal sensitivity to ID and OD defects and the existence of linear relationship between defect depth and phase signal strength. These results tell us that RFEC inspection is feasible even in nonmagnetic steam generator tubes.

  • PDF

Guided Wave Mode Selection and Flaw Detection for Long Range Inspection of Polyethylene Coated Steel Gas Pipes (폴리에틸렌 코팅 가스배관의 광범위탐상을 위한 유도초음파 모드 선정 및 결함 검출)

  • Song, Sung-Jin;Park, Joon-Soo;Shin, Hyeon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.406-414
    • /
    • 2001
  • Ultrasonic guided waves were explored to apply them to the long range inspection of polyethylene coated steel gas pipes. The steel pipes have such dimensions as 190.7mm inside diameter and 5.3mm thickness. The outside surface of the pipe is coated by a polyethylene layer of $1.9{\pm}0.5mm$ thickness. Non-axisymmetric guided waves were excited on the outside surface of the polyethylene coated pipe by using a 0.5MHz transducer with a variable angle shoe. Frequency and phase velocity tuning was used to find optimum guided wave modes for the inspection. The dispersive characteristics of the modes were analyzed in time-frequency representation obtained by short time Fourier transforms. Sample results were presented for artificial defects such as wall thinning and hole.

  • PDF

A Study on 5G Base Station Inspection using 8T8R Combiner (8T8R콤바이너를 이용한 5G 무선국 검사에 관한 연구)

  • Lee, Chang-Soo;You, Chan-Woo;Park, Sung-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.229-236
    • /
    • 2022
  • This article studied the radio station inspection method, which utilizes the 8T8R combiner to reduce 5G radio station inspection measurement times. It is a common that 5G radio station inspections measure RF (Radio Frequency) output signals, which correspond to the number of arrayed antennas individually. However, this study suggested a way to save the time spent on existing methods, by comparing measurement values of individual channels and 8T8R. As a result, it is confirmed that when the 8T8R combiner is used, not only the resulting value of radio station inspections was accurate, but also the measurement time being shortened by up to 8 times compared to existing method.

A Study on the Detection of Defects Using AC Current -The Effect of Frequency and Lift-off- (교류전류를 이용한 결함탐상에 관한 연구 - 주파수와 Lift-off 효과 -)

  • Kim, Hoon;Kim, Jeong-Youp;Moon, Bong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.529-533
    • /
    • 2001
  • NDI technique system using AC current is newly developed for inspection of defects. This technique is non-contact measurement system and can be applied for locating and sizing of surface defects in components. In this paper, the technique was applied for evaluating the location and size for 2-dimensional surface cracks and we had investigated the influence of frequency and lift-off. The results show that defects are able to detect with the variety of voltage, and the measuring voltage for the depth of defects are under the influence of the measuring frequency and the lift-off.

  • PDF

Nondestructive Inspection Method of Composite Laminated Plates by Holographic Interferometry (홀로그래피 간섭계를 이용한 복합적층판의 결함측정)

  • 김석중;김재형;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3202-3218
    • /
    • 1994
  • Mode shapes and natural frequencies of vibrating laminated composite plates are taken using real-time and time-average holographic interferometry. Debonds and delamination in the laminated plates are measured nondestructively. During holographic testing of composite plates, it has been found that the conditions for the local resonance in debonds are strongly dependent on the frequency of excitation. A membrane resonance model was proposed to describe this behavior. Relations between characteristic length according to the size, shape of debonds and membrane resonance frequency are presented. Several experiments were performed to verify the membrane resonance model. The agreements between the predicted excitation frequency and the observed resonance frequency are good. The experimental results show that higher stresses and strains due to local resonance lead to the debond detection.

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

A Survey on the Residual Pesticides on Agricultural Products on the Markets in Incheon from 2016 to 2018 (인천광역시 유통 농산물의 최근 3년간 잔류농약 실태조사)

  • Park, Jeong-Eun;Lee, Mi-Yeon;Kim, Sun-Hoi;Song, Sung-Min;Park, Byung-Kyu;Seo, Soon-Jae;Song, Jae-Yong;Hur, Myong-Je
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.205-212
    • /
    • 2019
  • BACKGROUND: This survey conducted on agricultural products in Incheon for the past three years from 2016 to 2018 to detect residual pesticides and to monitor the use of pesticides. METHODS AND RESULTS: Residual pesticides were analyzed for a total of 5,937 agricultural products in Samsan wholesale market, traditional market and large retailers in Incheon. Samples were analyzed by multi class pesticide method using GC-MS/MS, LC-MS/MS, GC-ECD/NPD, and UHPLC. In 59 cases (1.0%) residual pesticides were detected improperly and these cases exceeded maximum residue limits (MRLs). CONCLUSION: The ratios of violative agricultural products were similar each year at approximately 1.0% per year, but the residual pesticide detection rates with the limit included in the samples were shown to be gradually decreasing to 17.9%, 12.6%, and 11.2% annually. The frequency of violative residual pesticides was high in order of Diazinon, Chlorpyrifos, Iprodione, etc. Residual pesticide monitoring might be needed in the future continuously, as violations in agricultural products distributed in Incheon are shown at a similar level every year.

The Study of Micro Crack Detection in Dissimilar Metal Weld Using a Variable Ultrasound Infrared Thermography (가변초음파 적외선열화상을 이용한 이종접합용접부의 미세균열 검출 연구)

  • Park, Jeong-Hak;Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.215-220
    • /
    • 2015
  • As a nondestructive inspection technology currently in use, infrared thermography has gradually expanded its application range to industry. The method detects only defect areas by grafting ultrasound on a technique of detecting infrared energy emitted from all objects with absolute temperature of 0 K and converting this energy into thermography for inspection. Ultrasound infrared thermography has merits including the ability to inspect a wide area in a short time without contacting the target object. This study investigated the applicability of the technique for defect detection using variable ultrasound excitation inspection methods on samples of Terfenol-D, a magnetostrictive material with a tunable natural resonant frequency.

A Study on the Thermal Hydraulic Analysis and B-Scan Inspection for LDIE Degradation of Carbon Steel Piping in a Nuclear Plant (원전 탄소강 배관의 액적충돌침식 손상에 대한 B-Scan 검사 및 수치해석적 분석)

  • Hwang, Kyeong Mo;Lee, Dae Young
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.218-224
    • /
    • 2012
  • Liquid droplet impingement erosion (LDIE) known to be generated in aircraft and turbine blades is recently appeared in nuclear piping. UT thickness measurements with both A-scan and B-scan UT inspection equipments were performed for a component estimated as susceptible to LDIE in feedwater heater vent system. The thickness data measured with B-Scan equipment were compared with those of A-Scan. Thermal hydraulic analysis based on ANSYS FLUENT code was performed to analyze the behavior of liquid droplets inside piping. The wall thinning rate and residual lifetime based on both existing Sanchez-Caldera equation and measuring data were also calculated to identify the applicability of the existing equation to the LDIE management of nuclear piping. Because Sanchez-Caldera equation do not consider the feature of magnetite formed inside piping, droplet size, colliding frequency, the development of new evaluation method urgently needs to manage the pipe wall thinning caused by LDIE.

Distribution of Natural Frequency of 2-DOF Approximate Model of Stay Cable to Reduction of Area (단면감소에 따른 사장케이블의 2-자유도 근사모델의 고유진동수 분포)

  • Joe, Yang-Hee;Lee, Hyun-Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.147-154
    • /
    • 2014
  • The cable damages of the bridge structures induce very important impact on the structural safety, which implies the close monitoring of the cable damage is required to secure sustained safety of the bridges. Most usual available maintenance techniques are based on the monitoring the change of the natural frequency of the structures by damages. However, existing method are based on vibration method to calculate lateral vibration and system identification can calculate the axial stiffness using sensitivity equation by trial error method. But the frequency study by the longitudinal movement need because of the sag effect in system identification. This study proposes a new method to investigate the damage magnitudes and status. The method improves the accuracies in the magnitudes and status of damages by adopting the natural frequency of longitudinal movement. The study results have been validated by comparing them with the approximate solution of FEM. Thus, the relationship of cable damage and frequency appear with relation that the severe damage has the little frequency. If we know the real frequency we can estimate the cable damage severity using this relationship. This method can be possible the efficient management of the cable damage.