• Title/Summary/Keyword: Inspection and Measurement Device

Search Result 68, Processing Time 0.027 seconds

Development of Integrated Wireless Sensor Network Device with Mold for Measurement of Concrete Temperature (콘크리트 온도 측정을 위한 거푸집 일체형 무선센서네트워크 장치 개발)

  • Lee, Sung Bok;Park, Seong Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.129-136
    • /
    • 2012
  • Temperature of fresh concrete can be effectively used to predict the strength of concrete being cured and make an informed decision for stripping the molds. A hygrothermograph and thermo-couple sensors that require an extensive wiring have been applied to measure a temperature of concrete at the early stage of the curing process on site. However, these methods have limits to provide the temperature data in real time due to harsh working environment including frequent cutting of wires. Therefore, this study is aiming at developing a device based on wireless sensor network to measure the temperature of concrete being cured in formwork. The result showed that the wireless sensor with probe type thermistor which is developed had the same temperature data compared to the existed wire type thermistor, and we confirmed the temperature history of concrete in real time for 28 days throughout the gateway by wireless network that collects the temperature data measured from specimens in laboratory. Also, the network device for transmission can be easily separated from the probe sensor part and reused consistently. If the wireless sensor network device developed uses in the field, the temperature management of concrete will be systematically conducted from at the early stage of the curing, and especially be effective for cold weather concrete construction. In addition, it will contribute to the establishment of advanced quality control system for concrete and productivity of supervisors on site will be increased in the future.

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

Detecting Digital Micromirror Device Malfunctions in High-throughput Maskless Lithography

  • Kang, Minwook;Kang, Dong Won;Hahn, Jae W.
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.513-517
    • /
    • 2013
  • Recently, maskless lithography (ML) systems have become popular in digital manufacturing technologies. To achieve high-throughput manufacturing processes, digital micromirror devices (DMD) in ML systems must be driven to their operational limits, often in harsh conditions. We propose an instrument and algorithm to detect DMD malfunctions to ensure perfect mask image transfer to the photoresist in ML systems. DMD malfunctions are caused by either bad DMD pixels or data transfer errors. We detect bad DMD pixels with $20{\times}20$ pixel by white and black image tests. To analyze data transfer errors at high frame rates, we monitor changes in the frame rate of a target DMD pixel driven by the input data with a set frame rate of up to 28000 frames per second (fps). For our data transfer error detection method, we verified that there are no data transfer errors in the test by confirming the agreement between the input frame rate and the output frame rate within the measurement accuracy of 1 fps.

Development of 3D Measuring System using Spherical Coordinate Mechanism by Point Laser Sensor (포인트 레이저 센서를 이용한 구면좌표계식 3차원 형상측정시스템 개발)

  • 맹희영;성봉현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.201-206
    • /
    • 2004
  • Laser scanner are getting used for inspection and reverse engineering in industry such as motors, electronic products, dies and molds. However, due to the lack of efficient scanning technique, the tasks become limited to the low accuracy purpose. The main reasons for this limitation for usefulness are caused from the optical drawback, such as irregular reflection, scanning direction normal to measuring surface, the influence of surface integrity, and other optical disturbances. To overcome these drawback of laser scanner, this study propose the mechanism to reduce the optical trouble by using the 2 kinds of rotational movement axis and by composing the spherical coordinate to scanning the surface keeping normal direction consistently. So, it could be designed and interfaced the measuring device to realize that mechanism, and then it could acquisite the accurate 3D form cloud data. Also, these data are compared with the standard master ball and the data acquisited from the touch point sensor, to evaluate the accuracy and stability of measurement and to demonstrate the implementation of an dental tooth purpose system

  • PDF

Introduction to IEC Standardization for Superconducting Sensors and Detectors

  • Ohkubo, M.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.106-109
    • /
    • 2012
  • Superconducting sensors and detectors have been applied to many fields or beginning to enter the maturing stage. The applications spread over a wide range of fields such as radio telescope, medical examination, quantum information, contamination inspection, materials analysis, etc. For users of the superconducting devices as well as developers, we have to avoid confusion of naming, graphical circuit symbols, and measurement methods for device performance. We are trying to formulate international standards under the International Electrotechnical Commission - Technical Committee 90 (IEC-TC90), which is responsible for superconductivity. The sensors and detectors to be considered are divided into two groups: coherent sensors (SQUID, SIS mixers, etc.) and direct detectors (TES, STJ, MKID, SSPD, etc.).

Emission Factor and Fuel Economy Calculation Using Vehicle Inspection and Maintenance Program (자동차 환경검사에 의한 대기오염물질 배출계수 및 연비 산출)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Park, Jun-Hong;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.97-106
    • /
    • 2009
  • An objective of this study is to give practical information that could be used for calculating pollutant emission factors and fuel economy from Korean Inspection & Maintenance program, which has been using steady state acceleration simulation mode. Concentration results from I/M test is adequately converted to mass emission factors and fuel efficiency data, which have unit of g/km and km/L, respectively. Exhaust volume flow(EVF), which is for converting emission result from concentration to mass, is measured by tracer method in various vehicle speed - power condition. It is found that there is an apparent second order relationship between EVF and vehicle inertia weight. EVF is expressed in function of vehicle inertia weight in order to estimate EVF in I/M site without measuring device. Converted mass emission results from measured EVF and raw emission analyzer show a satisfactory agreement with those from conventional CVS-bag type measurement system. Mass emission factors and fuel efficiency from measured EVF and estimated EVF also show good agreement to each other. Considering that an I/M program has great advantages to recruit-based emission test in terms of the number of test vehicle, the information in this study can be used for developing an alternative procedure to collect more various data to establish national database of mobile emission factors and fuel economy, even though the driving cycle in I/M program is steady state cycle rather than transient cycle.

Active Vibration Measuring Sensor for Nondestructive Test of Electric Power Transmission Line Insulators (송전선로 애자의 비파괴 검사를 위한 능동형 진동 측정센서)

  • Lee, Jae-Kyung;Park, Joon-Young;Cho, Byung-Hak
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.424-430
    • /
    • 2008
  • A new active vibration measurement system in electric power transmission line is presented, using in the nondestructive test. With a permanent magnet and a couple of coils, the system exerts impact force to a test object and in turn picks up the vibration of the object. The natural frequency with the amplitude obtained from the system are used as a basis for the detection of defects in the object. The system is controlled by an electronic device designed to facilitate the fully automated testing process with consistent repeatability and reliability which are essential to the nondestructive test. The system is expected to be applied to the wide area of defect detection including the classification of mechanical parts in production and inspection processes.

Development of Inspection Methodology for a Nuclear Piping Wall Thinning Caused by Erosion Using Ultrasonic B-Scan Measurement Device (B-Scan 초음파 측정장비를 이용한 원전 배관 침식손상 검사법 개발)

  • Lee, Dae Young;Suh, Heok Ki;Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.89-95
    • /
    • 2012
  • U.S. Electric Power Research Institute (EPRI) has developed CHECWORKS program and applied it to power plant piping lines since some lines were ruptured by flow-accelerated corrosion (FAC) in 1978. Nowadays the CHECWORKS program has been used to manage pipe wall thinning phenomena caused by FAC. However, various erosion mechanisms can occur in carbon-steel piping. Most common forms of erosion are cavitation, flashing, liquid droplet impingement erosion (LDIE), and Solid Particle Erosion (SPE). Those erosion mechanisms cause pipe wall thinning, leaking, rupturing, and even result in unplanned shutdowns of utilities. Especially, in two phase condition, LDIE damages a wide scope of plant pipelines. Furthermore, LDIE is the major culprit to cause such as power runback by pipe leaking. This paper describes the methodologies that manage wall thinning and also predict LDIE wall thinning area. For this study, current properties of two-phase condition are investigated and LDIE areas are selected. The areas are checked by B-Scan method to detect the effect of wall thinning phenomena.

실험적 방법을 이용한 TFT-LCD 정밀 검사 장비의 진동 허용 규제치 평가 및 진동 저감 대책

  • Lee Hong-Gi;Park Sang-Gon;Jeon Jong-Gyun;Son Seong-Wan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.49-54
    • /
    • 2005
  • In the case of a sensitive equipment, it require a vibration free environment to provide its proper function. Especially, lithography and inspection device, which have sub-nanometer class high accuracy and resolution, have come to necessity for producing more improved Giga Class semi conductor wafers. The aim of this study is to evaluate the allowable vibration response of a precision inspect ion equipment, which has some trouble in field, by using experimental measurement data and to proposal a proper ant i-vibration method.

  • PDF

Development of Thickness Measurement Method From Concrete Slab Using Ground Penetrating Radar (GPR 기반 콘크리트 슬래브 시공 두께 검측 기법 개발)

  • Lee, Taemin;Kang, Minju;Choi, Minseo;Jung, Sun-Eung;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.39-47
    • /
    • 2022
  • In this paper, we proposed a thickness measurement method of concrete slab using GPR, and the verification of the suggested algorithm was carried out through real-scale experiment. The thickness measurement algorithm developed in this study is to set the relative dielectric constant based on the unique shape of parabola, and time series data can be converted to thickness information. GPR scanning were conducted in four types of slab structure for noise reduction, including finishing mortar, autoclaved lightweight concrete, and noise damping layer. The thickness obtained by GPR was compared with Boring data, and the average error was 1.95 mm. In order to investigate the effect of finishing materials on the slab, additional three types of finishing materials were placed, and the following average error was 1.70 mm. In addition, sampling interval from device, the effect of radius on the shape of parabola, and Boring error were comprehensively discussed. Based on the experimental verification, GPR scanning and the suggested algorithm have a great potential that they can be applied to the thickness measurement of finishing mortar from concrete slab with high accuracy.