• Title/Summary/Keyword: Inspection and Measurement Device

Search Result 68, Processing Time 0.023 seconds

Design and Implementation of 30" Geometry PIG

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.629-636
    • /
    • 2003
  • This paper introduces the developed geometry PIG (Pipeline Inspection Gauge), one of several ILI (In-Line Inspection) tools, which provide a full picture of the pipeline from only single pass, and has compact size of the electronic device with not only low power consumption but also rapid response of sensors such as calipers, IMU and odometer. This tool is equipped with the several sensor systems. Caliper sensors measure the pipeline internal diameter, ovality and dent size and shape with high accuracy. The IMU (Inertial Measurement Unit) measures the precise trajectory of the PIG during its traverse of the pipeline. The IMU also provide three-dimensional coordination in space from measurement of inertial acceleration and angular rate. Three odometers mounted on the PIG body provide the distance moved along the line and instantaneous velocity during the PIG run. The datum measured by the sensor systems are stored in on-board solid state memory and magnetic tape devices. There is an electromagnetic transmitter at the back end of the tool, the transmitter enables the inspection operators to keep tracking the tool while it travels through the pipeline. An experiment was fulfilled in pull-rig facility and was adopted from Incheon LT (LNG Terminal) to Namdong GS (Governor Station) line, 13 km length.

A study on the Measurement Algorithm for the Ball Height of BGA Device Using Stereo Vision (스테레오 비젼을 이용한 BGA 소자의 볼 높이 측정 알고리즘에 관한 연구)

  • Kim, Joon-Seek;Park, Young-Soon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.26-34
    • /
    • 2006
  • In this paper, We proposed he algorithm for defect extraction and a study of the stereo image modeling o inspect defect for the ball height of BGA(ball grid way) device using 2-dimensional images captured by the BGA device of using the high resolution CCD cameras. This paper propose the package/ball area extraction of BGA device part, the FOV(field of view) calibration part, the top point matching part, and ball height measurement method. Each BGA device propose extraction method by defect, Through the experiment, we verified the result.

Development of Wireless Device for Inspecting Crankshaft Deflection Using Linear Encoder (리니어 엔코더를 이용한 선박 엔진용 무선 크랭크 샤프트 디플렉션 검사 장치 개발)

  • Kim, Jang-Kyu;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.104-111
    • /
    • 2009
  • A ship engine operator should compensate the crankshaft assembly of ship engine after inspecting crankshaft deflection error in the crank throw regularly to avoid engine vibration and abrasions. In the previous method, the operator enters the bed plate and measures crankshaft deflection using dial gauge on rotating crankshaft manually. However, this method can cause dangerous situation to the operator as well as uncomfortable in an inferior environment. In order to solve the problems, this paper studies the method which makes the operator measure the error outside of the bed plate. In this paper, it is suggested that BlueTooth wireless communication transfers the error data to the outer standing operator with digitalized crankshaft deflection inspection device developed in this paper. So, the wireless measurement system is developed and applied to a medium-speed marine engine through size-miniaturization. After applying test, the developed inspection device showed that it provides much safe and ease inspection method. Furthermore, in the result, the measuring accuracy is more improved.

LED frame inspection system design and implementation (LED 프레임 검사 시스템 설계 및 구현)

  • Park, Byung-Joon;Kim, Sun-jib
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.359-363
    • /
    • 2017
  • The LED (Liquid Emitting Diode) frame device is a big part of the representative display industry in Korea. LED is an essential part for TV, monitor, notebook, and mobile phone. In Japan, Taiwan, China and other countries, investment in LEDs has been strengthened, and productivity has become an important issue. However, as the size of the parts becomes smaller, the inconsistent inspection by the human eye becomes a problem of reliability, so that the automatic inspection process becomes an essential issue in the field of LED module inspection. In this paper, we investigate defects in visual inspection process using computer vision technology. The inspection of the LED frame is made quickly and accurately, thereby improving the efficiency of the process and shortening the inspection time. As a result of applying the inspection system to the field, we confirmed that it is possible to inspect quickly and accurately.

Development of Inspection Gauge System for Gas Pipeline

  • Han, Hyung-Seok;Yu, Jae-Jong;Park, Chan-Gook;Lee, Jang-Gyu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.370-378
    • /
    • 2004
  • An autonomous pipeline inspection gauge system has been developed for determining position, orientation, curvature, and deformations such as dents and wrinkles of operating pipelines by Korea Gas Company and Seoul National University. The most important part of several subsystems is the Strapdown Inertial Measurement Unit (SIMU), which is integrated with velocity and distance sensors, weld detection system, and digital recording device. The Geometry Pipeline Inspection Gauge (GeoPIG) is designed to operate continuously and autonomously for a week or longer in operating gas pipelines. In this paper, the design concepts, system integration, and data processing/analysis method for the PIG will be presented. Results from the recent experiment for a 58 kilometer gas pipeline will be discussed.

Monitoring Inductance Change to Quantitatively Analyze Magnetic Wear Debris in Lubricating Oil (인덕턴스 측정에 의한 윤활유 내 자성입자 정량적 평가)

  • Koo, HeeJo;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.189-194
    • /
    • 2016
  • Wear debris in lubricating oil can be indicative of potential damage to mechanical parts in rotating and reciprocating machinery. Therefore, on-line or in-line monitoring of lubricating components in machinery is of great importance. This work presents a device based on inductive measurement of lubricating oil to detect magnetic wear particles in a tested volume. The circuit in the device consists of Maxwell Bridge and LVDT to measure inductance differences between pure and contaminated oil. The device detects the passage of ferrous particles by monitoring inductance change in a coil. The sensing principle is initially demonstrated at the microscale using a solenoid. The device is then tested using iron particles ranging from $50{\mu}m$ to $100{\mu}m$, which are often found in severely worn mechanical components. The test results show that the device is capable of detecting and distinguishing ferrous particles in lubricating oil. The design concept demonstrated here can be extended to an in-line monitoring device for real-time monitoring of ferrous debris particles. A simulation using the CST code is performed to better understand the inductive response in the presence of magnetic bodies in the oil. The CST simulation further verifies the effectiveness of inductance measurement for monitoring magnetic particles within a tube.

A Study on the Inner Defect Inspection for Semiconductor Package by ESPI (ESPI를 이용한 반도체 패키지 내부결함 검사에 관한 연구)

  • Jung, Seung-Tack;Kim, Koung-Suk;Yang, Seung-Pil;Jung, Hyun-Chul;Lee, You-Hwang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1442-1447
    • /
    • 2003
  • Computer is a very powerful machine which is widely using for data processing, DB construction, peripheral device control, image processing etc. Consequently, many researches and developments have progressed for high performance processing unit, and other devices. Especially, the core units such as semiconductor parts are rapidly growing so that high-integration, high-performance, microminiat turization is possible. The packaging in the semiconductor industry is very important technique to de determine the performance of the system that the semiconductor is used. In this paper, the inspection of the inner defects such as delamination, void, crack, etc. in the semiconductor packages is studied. ESPI which is a non-contact, non-destructive, and full-field inspection method is used for the inner defect inspection and its results are compared with that of C-Scan method.

  • PDF

Dynamic deformation measurement in structural inspections by Augmented Reality technology

  • Jiaqi, Xu;Elijah, Wyckoff;John-Wesley, Hanson;Derek, Doyle;Fernando, Moreu
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.649-659
    • /
    • 2022
  • Structural Health Monitoring (SHM) researchers have identified Augmented Reality (AR) as a new technology that can assist inspections. Post-seismic structural inspections are conducted to evaluate the safety level of the damaged structures. Quantification of nearby structural changes over short-term and long-term periods can provide building inspectors with information to improve their safety. This paper proposes a Time Machine Measure (TMM) application based on an Augmented Reality (AR) Head-Mounted-Device (HMD) platform. The primary function of TMM is to restore the saved meshes of a past environment and overlay them onto the real environment so that inspectors can intuitively measure dynamic structural deformation and other environmental movements. The proposed TMM application was verified by demo experiments simulating a real inspection environment.

Development of Aging Diagnosis Device Through Real-time Battery Internal Resistance Measurement

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.129-135
    • /
    • 2022
  • Currently, the rapid growth of electric vehicles and the collection and disposal of waste batteries are becoming a social problem. The purpose of this paper is to propose a fast and efficient battery screening method through a safe inspection and storage method according to the collection and storage of waste batteries of electric vehicles. In addition, as the resistance inside the waste battery increases, an instantaneous voltage drop occurs, and there is a risk of overcharging and overdischarging compared to the initial state of the battery. Accordingly, there are great difficulties in operation, so the final goal of this study is to develop a device for diagnosing aging through real-time battery internal resistance measurement. Final result As a result of simulation of the internal resistance measurement test circuit through external impedance (AC), the actual simulation value was 0.05Ω, RS = Vrms / Irms => Vrms = 8.0036mV, Irms = 162.83Ma. Substitute the suggested method. The result was calculated as Rs = 0.0495Ω. It is possible to measure up to 64 impedances inside the aging diagnostic equipment that enables real-time monitoring of the developed battery cells, and the range can be changed according to the application method.

Development of a Real-time 3D Intraoral Scanner Based on Fringe-Projection Technique (프린지 투영법을 이용한 실시간 3D 구강 내 스캐너의 개발)

  • Ullah, Furqan;Lee, Gunn-Soo;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.156-163
    • /
    • 2012
  • Real-time three-dimensional shape measurement is becoming increasingly important in various fields, including medical sciences, high-technology industry, and microscale measurements. However, there are not so many 3D profile tools specially designed for specifically narrow space, for example, to scan the tooth shape of a human jaw. In this paper, a real-time 3D intraoral scanner is proposed for the measurement of tooth profile in the mouth cavity. The proposed system comprises a laser diode beam, a micro charge-coupled device, a graticule, a piezoelectric transducer, a set of optical lenses, and a polhemus device sensor. The phase-shifting technique is used along with an accurate calibration method for the measurement of the tooth profile. Experimental and theoretical inspection of the phase-to-coordinate relation is presented. In addition, a nonlinear system model is developed for collimating illumination that gives the more accurate mathematical representation of the system, thus improves the shape measurement accuracy. Experiment results are presented to verify the feasibility and performance of the developed system. The experimental results indicate that overall measurement error accuracy can be controlled within 0.4 mm with a variability of ${\pm}0.01$.