• Title/Summary/Keyword: Inspection Process

Search Result 1,482, Processing Time 0.026 seconds

A Measure of Landscape Planning and Design Application through 3D Scan Analysis (3D 스캔 분석을 통한 전통조경 계획 및 설계 활용방안)

  • Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.105-112
    • /
    • 2018
  • This study aims to apply 3D scanning technology to the field of landscape planning design. Through this, 3D scans were conducted on Soswaewon Garden and Seongrakwon Gardens to find directions for traditional landscape planning and designs. The results as follows. First, the actual measurement of the traditional garden through a 3D scan confirmed that a precise three-dimensional modeling of ${\pm}3-5mm$ error was constructed through the merging of coordinate values based on point data acquired at each observation point and postprocessing. Second, as a result of the 3D survey, the Soswaewon Garden obtained survey data on Jewoldang House, Gwangpunggak Pavilion, the surrounding wall, stone axis, and Aeyangdan wall, while the Seongnakwon Garden obtained survey data on the topography, rocks and waterways around the Yeongbyeokji pond area. The above data have the advantage of being able to monitor the changing appearance of the garden. Third, spatial information developed through 3D scans could be developed with a three-dimensional drawing preparation and inspection tool that included precise real-world data, and this process ensured the economic feasibility of time and manpower in the actual survey and investigation of landscaping space. In addition, modelling with a three-dimensional 1:1 scale is expected to be highly efficient in that reliable spatial data can be maintained and reprocessed to a specific size depending on the size of the design. In addition, from a long-term perspective, the deployment of 3D scan data is easy to predict and simulate changes in traditional landscaping space over time.

Development of maintenance cost estimation method considering bridge performance changes (교량 성능변화를 고려한 유지관리비용 추계분석 방법 개발)

  • Sun, Jong-Wan;Lee, Huseok;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.717-724
    • /
    • 2018
  • To prepare for the explosive increase in maintenance costs of bridges according to the aging of infrastructure, future maintenance costs of bridges should be predicted. For this purpose, the management status of bridges was investigated and modeled as the upper limit of the performance level and the target management level according to the life cycle. This paper proposes methodologies and procedures for estimating the bridge maintenance costs using two models and existing cost and performance prediction models that consist of unit repair cost model according to the safety score, performance degradation model of bridges, unit reconstruction cost, and average reconstruction time. To verify the applicability, future maintenance costs can be forecasted for specific management agency considering the number of bridges, degree of aging, and current management status. As a result, it is possible to obtain the maintenance cost and safety level of an individual bridge level for each year. In addition, by summing them up to the agency level, the average safety score, ratio of the safety level, inspection costs, repair costs, and reconstruction costs can be obtained. In a further study, the changes in maintenance costs can be analyzed according to the changes in the target management levels using the developed method. The optimal management level can be suggested by reviewing the results.

Multi-objective Optimization Model for Tower Crane Layout Planning in Modular Construction (모듈러 건축의 타워크레인 배치계획 수립을 위한 다중 최적화 모델 개발)

  • Yoon, Sungboo;Park, Moonseo;Jung, Minhyuk;Hyun, Hosang;Ahn, Suho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.36-46
    • /
    • 2021
  • With an increasing trend toward high-rise modular construction, the simultaneous use of tower cranes at a modular construction site has recently been observed. Tower crane layout planning (TCLP) has a significant effect on cost, duration, safety and productivity of a project. In a modular construction project, particularly, poor decision about the layout of tower cranes is likely to have negative effects like additional employment of cranes and redesign, which will lead to additional costs and possible delays. It is, therefore, crucial to conduct thorough inspection of field conditions, lifting materials, tower crane capacity to make decisions on the layout of tower cranes. However, several challenges exist in planning for a multi-crane construction site in terms of safety and collaboration, which makes planning with experience and intuition complicated. This paper suggests a multi-objective optimization model for selection of the number of tower cranes, their models and locations, which minimizes cost and conflict. The proposed model contributes to the body of knowledge by showing the feasibility of using multi-objective optimization for TCLP decision-making process with consideration of trade-offs between cost and conflict.

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

A Study on Tire Surface Defect Detection Method Using Depth Image (깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구)

  • Kim, Hyun Suk;Ko, Dong Beom;Lee, Won Gok;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.211-220
    • /
    • 2022
  • Recently, research on smart factories triggered by the 4th industrial revolution is being actively conducted. Accordingly, the manufacturing industry is conducting various studies to improve productivity and quality based on deep learning technology with robust performance. This paper is a study on the method of detecting tire surface defects in the visual inspection stage of the tire manufacturing process, and introduces a tire surface defect detection method using a depth image acquired through a 3D camera. The tire surface depth image dealt with in this study has the problem of low contrast caused by the shallow depth of the tire surface and the difference in the reference depth value due to the data acquisition environment. And due to the nature of the manufacturing industry, algorithms with performance that can be processed in real time along with detection performance is required. Therefore, in this paper, we studied a method to normalize the depth image through relatively simple methods so that the tire surface defect detection algorithm does not consist of a complex algorithm pipeline. and conducted a comparative experiment between the general normalization method and the normalization method suggested in this paper using YOLO V3, which could satisfy both detection performance and speed. As a result of the experiment, it is confirmed that the normalization method proposed in this paper improved performance by about 7% based on mAP 0.5, and the method proposed in this paper is effective.

3D Film Image Inspection Based on the Width of Optimized Height of Histogram (히스토그램의 최적 높이의 폭에 기반한 3차원 필름 영상 검사)

  • Jae-Eun Lee;Jong-Nam Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.107-114
    • /
    • 2022
  • In order to classify 3D film images as right or wrong, it is necessary to detect the pattern in a 3D film image. However, if the contrast of the pixels in the 3D film image is low, it is not easy to classify as the right and wrong 3D film images because the pattern in the image might not be clear. In this paper, we propose a method of classifying 3D film images as right or wrong by comparing the width at a specific frequency of each histogram after obtaining the histogram. Since, it is classified using the width of the histogram, the analysis process is not complicated. From the experiment, the histograms of right and wrong 3D film images were distinctly different, and the proposed algorithm reflects these features, and showed that all 3D film images were accurately classified at a specific frequency of the histogram. The performance of the proposed algorithm was verified to be the best through the comparison test with the other methods such as image subtraction, otsu thresholding, canny edge detection, morphological geodesic active contour, and support vector machines, and it was shown that excellent classification accuracy could be obtained without detecting the patterns in 3D film images.

Relative Importance Analysis of Management Level Diagnosis for Consignee's Personal Information Protection (수탁사 개인정보 관리 수준 점검 항목의 상대적 중요도 분석)

  • Im, DongSung;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 2018
  • Recently ICT, new technologies such as IoT, Cloud, and Artificial Intelligence are changing the information society explosively. But personal information leakage incidents of consignee's company are increasing more and more because of the expansion of consignment business and the latest threats such as Ransomware and APT. Therefore, in order to strengthen the security of consignee's company, this study derived the checklists through the analysis of the status such as the feature of consignment and the security standard management system and precedent research. It also analyzed laws related to consignment. Finally we found out the relative importance of checklists after it was applied to proposed AHP(Analytic Hierarchy Process) Model. Relative importance was ranked as establishment of an internal administration plan, privacy cryptography, life cycle, access authority management and so on. The purpose of this study is to reduce the risk of leakage of customer information and improve the level of personal information protection management of the consignee by deriving the check items required in handling personal information of consignee and demonstrating the model. If the inspection activities are performed considering the relative importance of the checklist items, the effectiveness of the input time and cost will be enhanced.

A Study on the Solution of Product Particle Attachment Problem using Practical TRIZ (실용 트리즈를 활용한 제품 Particle 부착 문제의 해결 방안 연구)

  • Kyu-Han Jeong;In-Kwang Song;Jang-Hee Lee
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.209-221
    • /
    • 2023
  • In the external inspection and packaging stages of products used in the semiconductor manufacturing process, there is a problem in which particles are adsorbed to the product itself or a carrying tool due to electrostatic discharge. This study presents a methodology that can improve the problem of adsorption of particles to a product by using a practical TRIZ technique. By applying the proposed practical TRIZ-based methodology, the problem was defined, and contradictions caused by product waiting time were derived. Among the derived contradictions, physical contradictions were set and the concept of 'space separation' was applied to derive solutions such as 'installation of Ionizer' and 'improvement of the layout of the workroom'. As a result of the experiment by applying 'Ionizer Installation' and 'Workroom Layout Improvement' derived through the application of practical TRIZ, it was confirmed that the particle adsorption problem that occurs during the waiting time of the product can be solved.Through this study, it is expected that workers, facility engineers, and technical engineers working at manufacturing processes will be able to effectively solve the problems they face through creative thinking and change of ideas by using practical TRIZ techniques, and contribute to innovative technology development and productivity improvement.

Comparison of Instrument Characteristics on the Total Organic Carbon Analysis Method in Water Samples (수질분야 총유기탄소 분석방법에 따른 장비별 특성 비교)

  • Hye-Sung Kim;Eun-Tae Hwang;Chan-Geun Lee;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.353-362
    • /
    • 2023
  • TOC, which can measure more than 90% of organic substances, can be measured quickly and easily,replacing BOD and COD, which were indicators of organic pollutants. According to water quality pollution control standards, when measuring TOC, if the inorganic carbon ratio in the sample is over 50%, the NPOC (Non-Purgeable Organic Carbon) method should be used. If volatile organic compounds (VOCs) are present at a certain concentration, the TC-IC (subtracting inorganic carbon from total carbon) method should be used. To validate the limitations of these analytical conditions, experiments were conducted by varying the ratio of TOC to IC in purified water and measuring the concentration of TOC in test solutions. The results showed no significant difference between the TC-IC method and the NPOC method. When measuring samples with added VOC standard solutions, it was observed that the carbon loss due to purging was not significant when using the NPOC method. Therefore, it is concluded that the choice of analytical method does not lead to significant differences when VOCs are present in the sample. To account for potential variations in results based on water quality pollution control standards and regulations regarding the approval and testing of environmental measurement devices, a comparison of field sample concentration values was made using two widely used types of TOC analyzers in Korea. The results showed variations of 0.02 to 0.83 mg/L between methods depending on the manufacturer, highlighting the need for caution when selecting an instrument.

Evaluation of Harmless Crack Size of SCM822H Steel by Double Shot Peening (이중 쇼트 피닝에 의한 SCM822H 강의 무해화 균열 크기 평가)

  • Jin-Woo Choi;Seo-Hyun Yun;Yung-Kug Kwon;Gum-Hwa Lee;Ki-Woo, Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1011-1017
    • /
    • 2023
  • In this study, the harmless crack size (ahml) by double shot peening (DSP) using shot balls with different diameters was evaluated on carburized, quenched-tempered SCM822H steel. The minimum crack size (aNDI) detectable by non-destructive inspection was also evaluated. The relationship between the crack size (a25,50) that reduces the fatigue limit by 25% and 50% and ahml was evaluated. The residual stress of DSP was greater in SP(0.6+0.08) than SP(0.8+0.08) and appeared deeper in the depth direction. In addition, the hardness below the surface appeared larger. The fatigue limit of DSP increased 2.07 times and 1.95 times compared to non-SP. All ahml of the DSP specimen was determined at the depth (a). The compressive residual stress distribution affects ahml, and the ahml of SP(0.6+0.08), which has a large compressive residual stress and a high fatigue limit, appeared large. ahml of SP(0.6+0.08) introduced deeper than the residual stress of SP(0.8+0.08) is larger in the range of As=1.0-0.3. Since the residual stress in the thickness direction has a greater effect on ahml than the residual stress at the surface, it is necessary to introduce it more deeply. The relation of ahml, a25,50, and aNDI were evaluated in the point for safety and reliability.