• Title/Summary/Keyword: Insider Threat

Search Result 39, Processing Time 0.025 seconds

A Study on Insider Threat Dataset Sharing Using Blockchain (블록체인을 활용한 내부자 유출위협 데이터 공유 연구)

  • Wonseok Yoon;Hangbae Chang
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.15-25
    • /
    • 2023
  • This study analyzes the limitations of the insider threat datasets used for insider threat detection research and compares and analyzes the solution-based insider threat data with public insider threat data using a security solution to overcome this. Through this, we design a data format suitable for insider threat detection and implement a system that can safely share insider threat information between different institutions and companies using blockchain technology. Currently, there is no dataset collected based on actual events in the insider threat dataset that is revealed to researchers. Public datasets are virtual synthetic data randomly created for research, and when used as a learning model, there are many limitations in the real environment. In this study, to improve these limitations, a private blockchain was designed to secure information sharing between institutions of different affiliations, and a method was derived to increase reliability and maintain information integrity and consistency through agreement and verification among participants. The proposed method is expected to collect data through an outflow threat collector and collect quality data sets that posed a threat, not synthetic data, through a blockchain-based sharing system, to solve the current outflow threat dataset problem and contribute to the insider threat detection model in the future.

  • PDF

A study on Classification of Insider threat using Markov Chain Model

  • Kim, Dong-Wook;Hong, Sung-Sam;Han, Myung-Mook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1887-1898
    • /
    • 2018
  • In this paper, a method to classify insider threat activity is introduced. The internal threats help detecting anomalous activity in the procedure performed by the user in an organization. When an anomalous value deviating from the overall behavior is displayed, we consider it as an inside threat for classification as an inside intimidator. To solve the situation, Markov Chain Model is employed. The Markov Chain Model shows the next state value through an arbitrary variable affected by the previous event. Similarly, the current activity can also be predicted based on the previous activity for the insider threat activity. A method was studied where the change items for such state are defined by a transition probability, and classified as detection of anomaly of the inside threat through values for a probability variable. We use the properties of the Markov chains to list the behavior of the user over time and to classify which state they belong to. Sequential data sets were generated according to the influence of n occurrences of Markov attribute and classified by machine learning algorithm. In the experiment, only 15% of the Cert: insider threat dataset was applied, and the result was 97% accuracy except for NaiveBayes. As a result of our research, it was confirmed that the Markov Chain Model can classify insider threats and can be fully utilized for user behavior classification.

Unified Psycholinguistic Framework: An Unobtrusive Psychological Analysis Approach Towards Insider Threat Prevention and Detection

  • Tan, Sang-Sang;Na, Jin-Cheon;Duraisamy, Santhiya
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.1
    • /
    • pp.52-71
    • /
    • 2019
  • An insider threat is a threat that comes from people within the organization being attacked. It can be described as a function of the motivation, opportunity, and capability of the insider. Compared to managing the dimensions of opportunity and capability, assessing one's motivation in committing malicious acts poses more challenges to organizations because it usually involves a more obtrusive process of psychological examination. The existing body of research in psycholinguistics suggests that automated text analysis of electronic communications can be an alternative for predicting and detecting insider threat through unobtrusive behavior monitoring. However, a major challenge in employing this approach is that it is difficult to minimize the risk of missing any potential threat while maintaining an acceptable false alarm rate. To deal with the trade-off between the risk of missed catches and the false alarm rate, we propose a unified psycholinguistic framework that consolidates multiple text analyzers to carry out sentiment analysis, emotion analysis, and topic modeling on electronic communications for unobtrusive psychological assessment. The user scenarios presented in this paper demonstrated how the trade-off issue can be attenuated with different text analyzers working collaboratively to provide more comprehensive summaries of users' psychological states.

A Proposal for the Definition of Insider (Threat) and Mitigation for the Korea Military Environment (한국군 환경에 적합한 내부자(위협) 정의 및 완화방안 제안)

  • Won, Kyung-Su;Kim, Seung-Joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1133-1151
    • /
    • 2019
  • Insider threats in the field of information security are so important that the research is continuing centering on the institutes attached to the Carnegie Mellon University. On the other hand, we do not have any separate research institutes. In particular, insider threat research on the defense IT environment directly connected with the survival of the country is not proceeding in depth. In addition, due to the specificity of the military, defense IT security has limited research as an academic discipline, and even the establishment of concepts has not been achieved properly. In addition, because of differences in the environment, the US standard can not be borrowed as it is. This paper analyzes the defense IT environment and defines an insider (threat) suitable for the Korea military environment. I'd like to suggest the type of insider threat and how to mitigate it.

A Study on the Response to Acts of Unlawful Interference by Insider Threat in Aviation Security (항공보안 내부자 위협에 의한 불법방해행위의 대응을 위한 연구)

  • Sang-hoon Lim;Baek-yong Heo;Ho-won Hwang
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.16-22
    • /
    • 2023
  • Terrorists have been attacking in the vulnerable points of aviation sector with the diverse methods of attacks. Recently, Vulnerability is increasing because the Modus Operandi of Terrorism is carried out by exploitation of people in the form of employee working in aviation sector whose role provides them with privileged access to secured locations, secured items or security sensitive information. Furthermore, cases of insider threat are rising across the world with the phenomenon of personal radicalization through internet and social network service. The government of ROK must respond to insider threat could exploit to acts of unlawful interference and the security regulations should be established to prevent from insider threat in advance refer to the acts of unlawful interference carried out in foreign countries and the recommendations by USA, UK and ICAO.

Indicator-based Behavior Ontology for Detecting Insider Threats in Network Systems

  • Kauh, Janghyuk;Lim, Wongi;Kwon, Koohyung;Lee, Jong-Eon;Kim, Jung-Jae;Ryu, Minwoo;Cha, Si-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5062-5079
    • /
    • 2017
  • Malicious insider threats have increased recently, and methods of the threats are diversifying every day. These insider threats are becoming a significant problem in corporations and governments today. From a technology standpoint, detecting potential insider threats is difficult in early stage because it is unpredictable. In order to prevent insider threats in early stage, it is necessary to collect all of insiders' data which flow in network systems, and then analyze whether the data are potential threat or not. However, analyzing all of data makes us spend too much time and cost. In addition, we need a large repository in order to collect and manage these data. To resolve this problem, we develop an indicator-based behavior ontology (IB2O) that allows us to understand and interpret insiders' data packets, and then to detect potential threats in early stage in network systems including social networks and company networks. To show feasibility of the behavior ontology, we developed a prototype platform called Insider Threat Detecting Extractor (ITDE) for detecting potential insider threats in early stage based on the behavior ontology. Finally, we showed how the behavior ontology would help detect potential inside threats in network system. We expect that the behavior ontology will be able to contribute to detecting malicious insider threats in early stage.

A Study on the Insider Behavior Analysis Framework for Detecting Information Leakage Using Network Traffic Collection and Restoration (네트워크 트래픽 수집 및 복원을 통한 내부자 행위 분석 프레임워크 연구)

  • Kauh, Janghyuk;Lee, Dongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.125-139
    • /
    • 2017
  • In this paper, we developed a framework to detect and predict insider information leakage by collecting and restoring network traffic. For automated behavior analysis, many meta information and behavior information obtained using network traffic collection are used as machine learning features. By these features, we created and learned behavior model, network model and protocol-specific models. In addition, the ensemble model was developed by digitizing and summing the results of various models. We developed a function to present information leakage candidates and view meta information and behavior information from various perspectives using the visual analysis. This supports to rule-based threat detection and machine learning based threat detection. In the future, we plan to make an ensemble model that applies a regression model to the results of the models, and plan to develop a model with deep learning technology.

Advanced insider threat detection model to apply periodic work atmosphere

  • Oh, Junhyoung;Kim, Tae Ho;Lee, Kyung Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1722-1737
    • /
    • 2019
  • We developed an insider threat detection model to be used by organizations that repeat tasks at regular intervals. The model identifies the best combination of different feature selection algorithms, unsupervised learning algorithms, and standard scores. We derive a model specifically optimized for the organization by evaluating each combination in terms of accuracy, AUC (Area Under the Curve), and TPR (True Positive Rate). In order to validate this model, a four-year log was applied to the system handling sensitive information from public institutions. In the research target system, the user log was analyzed monthly based on the fact that the business process is processed at a cycle of one year, and the roles are determined for each person in charge. In order to classify the behavior of a user as abnormal, the standard scores of each organization were calculated and classified as abnormal when they exceeded certain thresholds. Using this method, we proposed an optimized model for the organization and verified it.

A study on the Development of Personnel Security Management for Protection against Insider threat (내부 정보보호를 위한 인원보안 관리 방안 연구)

  • Cha, In-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.210-220
    • /
    • 2008
  • Insider threat is becoming a very serious issue in most organizations and management is responsible for security implementation. This study is to develop a personnel security management indicators in the areas of Personnel Assurance, Personnel Competence, and Security Environment and protection against insider threats. In this study, the information security management system and related papers are examined by reviewing the existing researches and cases. Proposed indicators are verified by pilot test, empirically analyzed to expose experts' perception and the validity, importance, and risk level of each indicators through a questionnaire. Result were encouraging, but additional study focused on personnel security management using factor analysis is needed in the future.

  • PDF

Malicious Insider Detection Using Boosting Ensemble Methods (앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법)

  • Park, Suyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.267-277
    • /
    • 2022
  • Due to the increasing proportion of cloud and remote working environments, various information security incidents are occurring. Insider threats have emerged as a major issue, with cases in which corporate insiders attempting to leak confidential data by accessing it remotely. In response, insider threat detection approaches based on machine learning have been developed. However, existing machine learning methods used to detect insider threats do not take biases and variances into account, which leads to limited performance. In this paper, boosting-type ensemble learning algorithms are applied to verify the performance of malicious insider detection, conduct a close analysis, and even consider the imbalance in datasets to determine the final result. Through experiments, we show that using ensemble learning achieves similar or higher accuracy to other existing malicious insider detection approaches while considering bias-variance tradeoff. The experimental results show that ensemble learning using bagging and boosting methods reached an accuracy of over 98%, which improves malicious insider detection performance by 5.62% compared to the average accuracy of single learning models used.