• 제목/요약/키워드: Inside heat exchanger

검색결과 160건 처리시간 0.031초

철도차량용 공기압축기의 열교환기 최적 설계를 위한 해석 연구 (Numerical Analysis for Optimal Design of Heat Exchanger in Air Compressor for Railroad Vehicle)

  • 김무선;정종덕;장성일;안준
    • 설비공학논문집
    • /
    • 제29권11호
    • /
    • pp.570-579
    • /
    • 2017
  • In this study, we examined the multi-stage piston-type air compressors typically used in a railroad vehicle, and the heat transfer efficiency was analyzed according to the design conditions of the heat exchanger (a compressor component module for cooling the compressed high temperature air). For the fin-tube heat exchanger used in the most air compressors, numerical analysis was performed to analyze heat transfer by defining the various rectangle tube sizes and the number of fin-per-unit area as design variables under the same flow rate of compressed air. Also, this analysis compared the temperature of the compressed air. Regarding environmental conditions for analysis, the flow rate of the external cooling air was measured and the mean value of the values was applied. And a "turbulence model" was considered in both the external flow of the cooling air and the internal flow inside the tube. From the results of analysis, it was found that the change of the aspect ratio value of the tube greatly influences the heat transfer efficiency of the compressed air, and influences if the fin density is relatively small. As a result, the optimum design specifications of the heat exchanger for air compressors were confirmed based on the analysis of the heat transfer efficiency, according to the design conditions of fin and tube by the operating temperature range of the compressed air.

2상 극저온 열전달 과정 계산에서의 CFD 응용 (Application of CFD to tile Calculation of 2 Phase Cryogenic Heat Transfer Processes)

  • 유걸;악해파;정모;배철호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.141-147
    • /
    • 2011
  • A two-phase numerical model for plate-fin heat exchangers with plain fins and wave fins is studied incorporating the thermodynamic properties and the characteristics of fluid flow. The numerical simulations for the two fins in cryogenic conditions are earned out by employing a homogenous two-phase flow model with the CFD code ANSYS CFX. The heat transfer coefficients and the friction factor for nitrogen saturated vapor condensation process inside two types of plate fin heat exchanger are evaluated including the effects of saturation temperature (pressure), mass flow rate and inlet vapor quantity. The convective heat transfer coefficients and friction factors will be used for design of plate-fin type heat exchangers operating under cryogenic conditions.

  • PDF

적층형 판 열교환기의 U턴부 유동해석 (An analysis of fluid flow In U-bend area of laminated plate heat exchanger)

  • 이관수;박철균;정지완
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.348-357
    • /
    • 1998
  • The flow characteristics inside U-bend tube of the laminated plate heat exchanger were numerically investigated. The behavior of fluid flow, and the variations of the faulty area and friction factor are examined according to the distance between the span and the wall and the diameter of the round attacked to the end of span. The results show that the diameter(d) of the round attached to the span is mainly associated with the smooth circulation of fluid flow rather than the size of faulty area and the friction factor. As the distance($\ell$) between the span and the wall decreases, the faulty area decreases, however the friction factor dramatically increases. It is also found that one can obtain a good result in the view of the flow characteristics and pressure drop at d=7.5mm and $\ell$=30.5mm.

  • PDF

확관을 고려한 불균일 내면가공관의 전열특성 (Heat Transfer Characteristics of the Non-Uniform Grooved Tube Considering Tube Expansion)

  • 이상무;박병덕
    • 설비공학논문집
    • /
    • 제24권7호
    • /
    • pp.553-559
    • /
    • 2012
  • A plate-fin heat exchanger is a type of heat exchanger widely used in air conditioners, and tubes and fins are tightly assembled by the mechanical expansion process of tubes. The tube expansion process deforms the grooves inside the tube, and the groove shapes also affect the adhesion between tubes and fins. In this study, the adhesion and heat transfer performance affected by the tube expansion of the non-uniform groove shape tube with different heights are investigated by both analysis and experiments. From the analysis method, it was shown that the contact pressure of non-uniform groove tube is higher than that of the uniform groove tube, and the most appropriate high groove number of the non-uniform groove tube is designed for the maximum contact pressure. From the experimental results, the decreasing rate of the condensation heat transfer coefficient is smaller in the non-uniform groove tube with different heights, compared to the conventional uniform groove tube. Also, the air-side heat transfer coefficient of the non-uniform groove tube with different heights is higher than that of the uniform groove tubes.

Performance Analysis of an Indoor Heat Exchanger with R-410A for GHP Application

  • Lee, Jong-Ho;Kim, Sung-Soo;Cha, Woo-Ho;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권4호
    • /
    • pp.129-134
    • /
    • 2009
  • The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchangers with R-410A for Gas Engine Driven Heat Pump (GHP) application and to find the optimum design conditions of indoor heat exchangers by parametric analysis for the key parameters. The key parameters are number of tube row, number of tube pipe, fin pitch and transverse tube pitch. In the air side, moisture out of the humid air condenses on the fin surface while the refrigerant (R-410A) boils inside the smooth tube. Therefore this study uses Log Mean Enthalpy Difference (LMHD) method to analyze the heat transfer from the humid air to the refrigerant. This study determines the heat exchanger size, air side/refrigerant side pressure drop and overall heat transfer coefficient. Optimum design conditions for the key parameters are also determined by the parametric analysis. The results show that number of rows and pipes, fin pitch have significant effect on the heat exchanger size. It is also found that the tube length of the louver fin is $17{\sim}30%$ shorter than that of the plate fin.

평판-휜 열교환기의 열-수력학적 성능에 대한 고속 바이패스 영향의 수치적 연구 (NUMERICAL STUDY OF THE HIGH-SPEED BYPASS EFFECT ON THE AERO-THERMAL PERFORMANCE OF A PLATE-FIN TYPE HEAT EXCHANGER)

  • 이준석;김민성;하만영;민준기
    • 한국전산유체공학회지
    • /
    • 제22권1호
    • /
    • pp.67-80
    • /
    • 2017
  • The high-speed bypass effect on the heat exchanger performance has been investigated numerically. The plate-fin type heat exchanger was modeled using two-dimensional porous approximation for the fin region. Governing equations of mass, momentum, and energy equations for compressible turbulent flow were solved using ideal-gas assumption for the air flow. Various bypass-channel height were considered for Mach numbers ranging 0.25-0.65. Due to the existence of the fin in the bypass channel, the main flow tends to turn into the core region of the channel, which results in the distorted velocity profile downstream of the fin region. The boundary layer thickness, displacement thickness, and the momentum thickness showed the variation of mass flow through the fin region. The mass flow variation along the fin region was also shown for various bypass heights and Mach numbers. The volumetric entropy generation was used to assess the loss mechanism inside the bypass duct and the fin region. Finally, the correlations of the friction factor and the Colburn j-factor are summarized.

피동 원자로건물 냉각계통 실험에 관한 수치적 연구 (Numerical Investigation on Experiment for Passive Containment Cooling System)

  • 하희운;서정수
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

휜 타입 내부열교환기 적용에 따른 차량용 냉방시스템 성능 특성 (Performance Characteristics of Vehicle Air Conditioning System Using Internal Heat Exchanger with Inner Fin)

  • 김성철
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.69-73
    • /
    • 2013
  • 내부열교환기를 이용한 에어컨 시스템은 작동유체인 R134a의 고압측 액상냉매와 저압측 기상냉매의 상호 열교환을 통해 시스템의 응축 효율을 증가시켜 에너지 효율을 개선시킨다. 이는 에어컨 시스템의 성능 향상 및 경량화를 가능하게 하여 차량 연비 향상과 냉매 누출을 최소화할 수 있으며, 또한 현 R134a 대비 대체냉매 (R1234yf 등)의 동등 냉방성능 확보를 가능하게 하는 기술이다. 본 연구에서는 내측 압출 파이프 및 외측 사이 고효율 냉각 휜 (fin)이 삽입된 이중관 형태의 내부열교환기 상세 설계를 위해, 냉각 휜의 높이 및 내측 압출 파이프 내부형상 등의 다양한 형상 설계인자 변경에 따른 열전달 성능 및 압력강하 특성을 살펴보았다. 가장 우수한 내부열교환기 성능은 난류형성을 위한 내측관 형상이 라이너 및 세레이션 겸용 타입이었으며, 이는 내부열교환기가 장착되지 않은 경우보다 냉방시스템 성능이 약 6.4%, 시스템 COP는 약 9.2% 향상된 결과를 나타내었다.

A Study on Velocity Profiles between Two Baffles in a Horizontal Circular Tube

  • Chang, Tae-Hyun;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.136-142
    • /
    • 2015
  • The shell and tube heat exchanger is an essential part of a power plant for recovering transfer heat between the feed water of a boiler and the wasted heat. The baffles are also an important element inside the heat exchanger. Internal materials influence the flow pattern in the bed. The influence of baffles in the velocity profiles was observed using a three-dimensional PIV (Particle Image Velocimetry) around baffles in a horizontal circular tube. The velocity of the particles was measured before the baffle and between them in the test tube. Results show that the velocity vectors near the front baffle flow along the vertical wall, and then concentrate on the upper opening of the front baffle. The velocity profiles circulate in the front and rear baffle. These profiles are related to the Reynolds number (Re) or the flow intensity. Velocity profiles at lower Re number showed complicated mixing to obtain the velocities and concentrate on the lower opening of the rear baffle as front wall. Numerical simulations were performed to investigate the effects of the baffle and obtain the velocity profiles between the two baffles. In this study, a commercial CFD package, Fluent 6.3.21 with the turbulent flow modeling, k-${\epsilon}$ are adopted. The path line and local axial velocities are calculated between two baffles using this program.

자동차 배기가스 유량 및 온도 변화에 따른 열전발전용 열교환기 발열량 특성에 관한 연구 (Thermal Caracteristics of the Automobile Exhaust gas based Heat exchanger with various Exhaust gas Temperature and Mass flow rate)

  • 김대완;기한 에카나야케;이무연
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.15-20
    • /
    • 2018
  • 본 논문은 자동차 열전발전용 열교환기에서 배기가스의 유량과 온도 변화에 따른 발열량 특성을 수치적으로 연구하였다. 자동차 열전발전용 열교환기는 내부에 핀을 설치하여 자동차 배기가스에서 나오는 열에너지를 열전소자로 최대 값을 전달할 수 있도록 하였으며, 상용 프로그램인 CAD를 이용하여 설계하였다. 그리고 배기가스의 유량과 온도 변화에 따른 열교환기 발열량 특성을 분석하기 위하여 상용 프로그램인 ANSYS CFX v17.0을 이용하여 배기가스 유량은 0.01, 0.02, 0.03 kg/s로 변화시키고, 배기가스 온도는 400, 450, 500, 550, $600^{\circ}C$로 변화시켜 수치해석 하였다. 결론적으로 열교환기의 입구 측과 출구 측 배기가스 압력 차는 배기가스의 유량에 따라 결정된다. 배기가스 유량이 증가하면 열교환기 입구 측과 출구 측 압력차는 증가하지만, 열교환기 입구 측과 출구 측 배기가스 압력차는 배기가스 온도에 따라 변하지 않는다. 따라서 열교환기 표면 온도를 최대 값으로 얻기 위해서는 배기가스 유량은 낮추고, 배기가스 온도는 높여야 한다는 결론을 도출하였다.