DOI QR코드

DOI QR Code

Thermal Caracteristics of the Automobile Exhaust gas based Heat exchanger with various Exhaust gas Temperature and Mass flow rate

자동차 배기가스 유량 및 온도 변화에 따른 열전발전용 열교환기 발열량 특성에 관한 연구

  • Received : 2017.01.17
  • Accepted : 2018.02.02
  • Published : 2018.02.28

Abstract

The objective of this study is to numerically investigate the thermal characteristics of an automobile exhaust-based heat exchanger for automotive thermoelectric power generation with various exhaust gas mass flow rates and temperatures. The heat exchanger for automotive thermoelectric power generation has a square-type pin installed inside, so the maximum amount of heat can be transferred to the thermoelectric element from the heat energy coming from the automobile exhaust gas. The exhaust gas mass flow rate changed from 0.01, to 0.02, to 0.03 kg/s, and the exhaust gas temperature changed from 400, to 450, to 500, to 550, to $600^{\circ}C$, respectively. A numerical simulation was conducted by using the commercial program ANSYS CFX v17.0. Consequently, the exhaust gas pressure difference between the inlet and the outlet of the heat exchanger is determined according to the flow rate of the exhaust gas. When the mass flow rate of the exhaust gas increased, the pressure difference between the inlet and the outlet of the heat exchanger increased, but the exhaust gas pressure difference between the inlet of the heat exchanger and the outlet did not vary with the exhaust gas temperature. Therefore, in order to obtain the maximum surface temperature from the heat exchanger, the exhaust gas mass flow rate should be lower, and the exhaust gas temperature should be higher.

본 논문은 자동차 열전발전용 열교환기에서 배기가스의 유량과 온도 변화에 따른 발열량 특성을 수치적으로 연구하였다. 자동차 열전발전용 열교환기는 내부에 핀을 설치하여 자동차 배기가스에서 나오는 열에너지를 열전소자로 최대 값을 전달할 수 있도록 하였으며, 상용 프로그램인 CAD를 이용하여 설계하였다. 그리고 배기가스의 유량과 온도 변화에 따른 열교환기 발열량 특성을 분석하기 위하여 상용 프로그램인 ANSYS CFX v17.0을 이용하여 배기가스 유량은 0.01, 0.02, 0.03 kg/s로 변화시키고, 배기가스 온도는 400, 450, 500, 550, $600^{\circ}C$로 변화시켜 수치해석 하였다. 결론적으로 열교환기의 입구 측과 출구 측 배기가스 압력 차는 배기가스의 유량에 따라 결정된다. 배기가스 유량이 증가하면 열교환기 입구 측과 출구 측 압력차는 증가하지만, 열교환기 입구 측과 출구 측 배기가스 압력차는 배기가스 온도에 따라 변하지 않는다. 따라서 열교환기 표면 온도를 최대 값으로 얻기 위해서는 배기가스 유량은 낮추고, 배기가스 온도는 높여야 한다는 결론을 도출하였다.

Keywords

References

  1. C. W. Cho, H. S. Lee, Y. G. Chang, T. K. Lim, J. P. Won and G. S. Lee, "Performance Characteristics of Thermoelectric Generator Modules with Temperature Reduction in Exhausted Gas", Proc. of The Korean Society of Automotive Engineers 2015 Spring Annual Meeting, pp. 285-285, May, 2015.
  2. Y. M. Bang, J. H. Seo, M. S. Patil, G. Ekanayake, Y. J. Doh, G. S. Lee J. K. Yeom and M. Y. Lee, "Study on Performance Characteristics in Thermoelectric Module with Variations of Exhaust Gas and Ambient Temperatures", Proc. of The Korean Society of Mechanical Engineers 2017 Spring Annual Meeting, pp. 46-47, May, 2017.
  3. C. W. Cho, E. S. Shin, J. C. Jang and H. C. Suh, "Study on Effects of Exhaust Pipe on Temperature at Thermoelectric Generator", Proc. of The Korean Society of Automotive Engineers 2016 Spring Annual Meeting, pp. 260-260, May, 2016.
  4. S. G. Park, B. D. In and K. H. Lee, "Performance of Thermoelectric Generator with Various Thermal Conditions of Exhaust Gas from Internal Combustion Engine", Proc. of The Korean Society of Automotive Engineers 2010 Fall Annual Meeting, pp. 456-461, November, 2010.
  5. C. H. Kim, H. C. Kim, S. W. Han, H. C. Seo and Y. S. Ko, "Characteristics of Exhaust Pressure According to the Exhaust Pipe Geometric Variation in a Thermoelectric Generation Module", Proc. of The Korean Society of Automotive Engineers 2016 Spring Annual Meeting, pp. 89-90, May, 2016.
  6. C. J. Moon, E. H. Cheang, J. M. Lim, S. J. Park, T. G. Kim and Y. G. Kim, "A Study for Thermoelectric Generator System And Caused Low Thermoelectric Power", Proc. of The Korean Solar Energy Society 2008 Spring Annual Meeting, pp. 68-74, April, 2008.
  7. B. D. In, S. K. Park and K. H. Lee, "Numerical Study of Thermoelectric Generator with Various Thermal Conditions of Exhaust Gas from Internal Combustion Engine", Proc. of The Korean Society of Automotive Engineers 2011 Spring Annual Meeting, pp. 168-171, May, 2011.
  8. D. W. Lee, "An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles", Korean Journal of Air-Conditioning and Refrigeration Engineering, vol. 26, no. 7, pp. 329-334, July, 2014. DOI: https://doi.org/10.6110/KJACR.2014.26.7.329
  9. D. W. Lee, "Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles", Korean Journal of Air-Conditioning and Refrigeration Engineering, vol. 26, no. 6, pp. 329-334, June, 2014. DOI: https://doi.org/10.6110/KJACR.2014.26.6.287
  10. G. Ekanayake, M. S. Patil, J. H. Seo, C. P. Cho and M. Y. Lee, "Numerical study on performance characteristics of the automotive exhaust base heat exchanger", Proc. of The Korean Society of Mechanical Engineers 2017 Fall Annual Meeting, pp. 33-34, November, 2017.
  11. Z. Han and R. D. Reitz, "A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling", Int. J. Heat Mass Transfer. vol. 40, no. 3, pp. 613-25, 1997. DOI: https://doi.org/10.1016/0017-9310(96)00117-2