• Title/Summary/Keyword: Insect food

Search Result 310, Processing Time 0.02 seconds

Effects of agricultural byproducts, DDG and MSG, on the larval development of mealworms

  • Kim, Sun Young;Kim, Hong Geun;Lee, Kyeong Yong;Yoon, Hyung Joo;Kim, Nam Jung
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.32 no.2
    • /
    • pp.69-79
    • /
    • 2016
  • Distillers dried grain (DDG) and makgeolli spent grain (MSG) are agricultural byproducts to produce alcoholic beverage. However, they are known to contain enough nutrients. Mealworm is a promising insect resource for an animal feed ingredient as well as alternative human food. With low cost, DDG and MSG were investigated as a feed ingredient for rearing high quality mealworms. DDG and MSG were mixed with wheat bran and compared to control feed (only wheat bran) for its effects on larval survivorship, larval weight, duration for developmental period, pupation rate, and pupal weight. When DDG added, larval survivorship was reduced to 50~70% compared to the control group. Larvae fed on DDG were heavier from third to sixth week. Especially, larvae with 50% DDG were 28% heavier than the control group at the third week. For the larval period, the 50% DDG group was 11% less than that for the control. The pupal weight for the 30% DDG group was 7% heavier than that for the control group. Pupation rates for all the DDG groups were higher than 90%. When compared to the control, larval survivorship for the 70% MSG group was low, but the 50% and 70% MSG groups were high during the seventh and eighth weeks because of delayed development. After the eighth week, larvae with 70% MSG showed the highest larval weight increase as 9~18% compared to the control group. Except 70% MSG group, all of MSG groups showed more than 90% pupation rates. We confirmed that adding 30~50% of DDG or MSG to conventional wheat bran have a strong potential to replace the conventional wheat bran insect feed for quality insect production.

Slow release of microencapsulated model compounds of insect pheromone using low molecular weight polyethylene and urea-formaldehyde resin (저분자량 polyethylene과 urea-formaldehyde 수지를 이용한 microencapsulation에 의한 곤충 페로몬의 model 화합물들의 slow release)

  • Kim, Jung-Han;Oh, Won-Taek;Kim, Yong-Jin
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.110-116
    • /
    • 1991
  • As the model compounds, citral and n-octanol which possess similar characteristics and structures of low molecular weight insect pheromones and $({\pm})-5-hydroxy-4-methyl-heptan-3-one$ which shows the aggregation pheromones activity of the rice weevil and the maize weevil were microencapsulated with low molecular weight polyethylene(LMPE) and urea-formaldehyde resin as wall materials. The core materials were microencapsulated as small particles in LMPE and urea-formaldehyde resin polymers and the microencapsulated polymers were white powders. And the polymer made from urea-formaldehyde resin was better than that from LMPE as wall material. The slow releasing effect and the releasing patten of the microencapsulated core materials were examined by solvent extraction method and headspace sampling method. Citral and n-octanol and $({\pm})-5-hydroxy-4-methyl-heptan-3-one$ were release more than 40 days and 15 days, respectively. The releasing pattern of urea-formaldehyde resin microcapsules showed rather smooth decrease than that of LMPE and was maintained at steady level longer.

  • PDF

The Strategy for the Development of Bio-Resources Utilizing Sericultural Products and Insects

  • Lee, Won-Chu;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • Experiments related to the field of sericulture started in the years 1900, in Korea. The sericultural experimental station in Korea was first organized among agricultural fields in Korea, indicating that sericulture in Korea was regarded as an important field of agriculture. Sericulture has been devoted to a great deal for the improvement of Korean economy during the past 100 years even under the coarse social circumstances caused particularly by the Korean War, However, the traditional Korean sericulture, aimed to produce silk yarn, was weakened, because of several reasons such as diminishment in silk consumption, increased labor charge in Korea, and so on. After this difficulty time, the Korean sericulture was revolutionized by shifting into functional sericulture from 1995, and the Korean sericulture now plays an important role for the improvement of human health. Mulberry tree, silkworm, and silk have a boundless potential to be developed as resources. We expect the know-how obtained through silkworm research would expand to the other insect research too. Thus, an area of entomological industry is hoped to prosper owing to insect research as well as sericulture. Mulberry tree is known to possess many bio-active substances, so it can be utilized as a resource for substitute medicine and a raw material for the functional food. In addition, an invention of genetically engineered mulberry variety, which will produce more bioactive substances, is expected. Silkworm is one of the most extensively studied insect organisms on the genome so far, Thus, silkworm is expected to be an "insect bio-factory", enabling mass-production of useful proteins by transformation, in which useful foreign genes are assimilated into silkworm. Silk can be transformed into several phases, because it possesses useful functional groups, which are sensitive to chemical reaction. Also, because silk fibrin itself is protein, it has a superior applicability as tissue membrane. Due to this usefulness, many researchers are now working on the silk as food, cosmetic, medical resource, and bioengineering resource, and even an expanded application is expected using silk in the future. Until now, the researches on insects were largely focused on the prevention of the damage caused by pest, instead of a beneficial aspect. However, insects are thought to be the fourth natural resource in the world, possessing unlimited potential as world resources in the near future. Therefore, our entomological research effort should be focused on the subject with potential for industrialization. Such subject includes selecting the insect species useful for environmental evaluation, construction of environment-friendly agricultural ecosystem, pollen mediation, pet, and advanced bio-resources.

  • PDF

Infrared Assisted Freeze-Drying (IRAFD) to Produce Shelf-Stable Insect Food from Protaetia brevitarsis (White-Spotted Flower Chafer) Larva

  • Khampakool, Apinya;Soisungwan, Salinee;You, SangGuan;Park, Sung Hee
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.813-830
    • /
    • 2020
  • In this study, the potential of infrared assisted freeze-drying (IRAFD) was tested for the production of shelf-stable edible insects: Protaetia brevitarsis larva (larva of white-spotted flower chafer). The IRAFD system was customized using an infrared lamp, K-type thermocouple, controller, and data acquisition system. The infrared lamp provided the sublimation energy for rapid freeze-drying (FD). The IRAFD conditions were continuous IRAFD-5.0 kW/㎡ and IRAFD-5.0 kW/㎡ at different weight reduction (WR) (10%, 20%, and 30%). The continuous IRAFD reduced the drying time to 247 min compared to the 2,833 min duration of FD (p<0.05). The electrical energy could be reduced by more than 90% through infrared radiation during FD (p<0.05). The Page model resulted in the best prediction among the tested drying kinetic models. In terms of quality, IRAFD showed significantly lower hardness, chewiness, and higher protein levels than hot air drying and FD (p<0.05). IRAFD better preserved the glutamic acid (6.30-7.29 g/100 g) and proline (3.84-5.54 g/100 g). The external product appearance after IRAFD exhibited more air pockets and volume expansion, which might result in a good consumer appeal. In conclusion, this study reports the potential of IRAFD in producing shelf-stable and value-added edible insects.

Growth performance of the edible mealworm species, Tenebrio molitor (Coleoptera: Tenebrionidae) on diets composed of brewer's yeast

  • Kim, Seonghyun;Park, Ingyun;Park, Haechul;Lee, Heui Sam;Song, Jeong-Hun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.2
    • /
    • pp.54-59
    • /
    • 2019
  • Yellow mealworms (Tenebrio molitor Linnaeus) are very promising insects for the food and feed industry. Because mealworms are in the spotlight as an alternative protein source in the future, it is necessary to develop efficient rearing techniques for mass production. To evaluate the effects of brewer's yeast (BY) on the growth of mealworms, Tenebrio molitor Linnaeus, the mealworms were fed with wheat bran (WB) diets containing different levels of BY (0, 10, 30, 50, and 70%). Larval survival, larval weight, development time, pupal weight and eclosion rate were monitored for 12 weeks. The results showed that mealworms fed on the diets containing 30% and 50% of BY have significantly higher weight gain, specific growth rate and daily weight gain, and lower larval duration than fed the control diet (100% WB) and other BY diets (10% and 70% BY). Larval survival on the diets containing 30% and 50% of BY was higher than on control diet. Pupal weight and eclosion rate were not significantly different among all diets. In conclusion, we suggest feeding the diet containing 30% of brewer's yeast with wheat bran in order to increase the production of mealworms.

A Case Study on Facilitating the Decomposition of Poultry Manure using Insect Larvae(2) (곤충에 의한 계분의 분해 특성평가에 대한 연구(2))

  • Woo-Whan, Jang;Sang-Chul, Mun;In-Hag, Choi
    • Journal of Environmental Science International
    • /
    • v.31 no.11
    • /
    • pp.993-997
    • /
    • 2022
  • This study was conducted to evaluate the structure and composition (i.e., pH, moisture, total-N, pathogens, and volatile fatty acids) of broiler and duck manure treated with larvae of three insect larvae, namely, Tenebrio molitor, Protaetia brevitarsis seulensis, and Ptecticus tenebrifer. Hatched Tenebrio molitor (n=300), Protaetia brevitarsis seulensis (n=60), and Ptecticus tenebrifer (n=300) were used in this study; specially, the larvae were divided into six treatments with three replicates. The treatments were as follows: T1: 110 g broiler manure + Tenebrio molitor larvae (n=50), T2: 110 g duck manure + Tenebrio molitor larvae (n=50), T3: 125 g broiler manure + Protaetia brevitarsis seulensis larvae (n=10), T4: 125 g duck manure + Protaetia brevitarsis seulensis larvae (n=10), T5: 105 g broiler manure + Ptecticus tenebrifer larvae (n=50), and T6: 105 g duck manure + Ptecticus tenebrifer larvae (n=50). For all the larval treatments, the following results were observed: The moisture content of the duck manure treat with three insect larvae was higher than that of the broiler manure (p<0.05), whereas broiler manure had a higher pH (p<0.05). In addition, the total nitrogen content of broiler manure was higher than that of duck manure (p<0.05). However, the insect larvae did not significantly affect pathogens (E.coli and Salmonella) and the volatile fatty acids (p>0.05). In conclusion, the use of the three insect larvae to create organic nitrogen compost using poultry manure is feasible.

Analysis of Nutritional Compounds and Antioxidant Effect of Freeze-Dried powder of the Honey Bee (Apis mellifera L.) Drone (Pupal stage) (서양종 꿀벌(Apis mellifera L.) 수벌번데기 동결건조 분말의 영양학적 성분 및 항산화 효과)

  • Kim, Jung-Eun;Kim, Do-Ik;Koo, Hui-Yeon;Kim, Hyeon-Jin;Kim, Seong-Yeon;Lee, Yoo-Beom;Kim, Ji-Soo;Kim, Ho-Hyuk;Moon, Jae-Hak;Choi, Yong-Soo
    • Korean journal of applied entomology
    • /
    • v.59 no.3
    • /
    • pp.265-275
    • /
    • 2020
  • In this study, we analyzed the nutritional ingredients of drone pupae (16th to 20th instar old) to evaluate the value of bee products and provide basic data for product diversification, and the extracts prepared using these pupae were tested for physiological activity. According to the analysis of the general ingredients of the freeze-dried powder of these bee pupae, the moisture, crude protein, crude fat, and crude ash was 1.69 ± 0.07%, 48.52 ± 0.20%, 23.41 ± 0.14%, and 4.05 ± 0.02%, respectively. Vitamin C and vitamin E were 14.92 ± 0.52 mg/100 g and 6.06 ± 0.11 mg α-TE/100 g, respectively. Regarding minerals, the highest content of K (1349.13 ± 34.57 mg/100 g) and P (1323.55 ± 43.85 mg/100 g) was observed and Ca and Fe were 55.43 ± 1.51 mg/100 g and 5.49 ± 0.19 mg/100 g, respectively. The fatty acids of the water extracted freeze-dried pupae powder accounted for approximately 59.62 of saturated fatty acids and 40.38 of unsaturated fatty acids, and high-quality fatty acids such as palmitic acid (C16:0) was 35.49 ± 0.08 and oleic acid (C18:1, n-9) was 35.91 ± 0.22 (g/100 g total fatty acids). The total amino acid content was 38.99 ± 2.63 g/100 g and the free amino acid was a total of 5129.04 mg/100 g, of which 1257.68 mg/100 g was proline and 759.12 mg/100 g glutamic acid. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of the drone pupae extract showed values of 0.8 for distilled water extract, 3.2 for 50% EtOH extract, 6.4 for 70% EtOH extract, and approximately 90% for 32 ㎍/mL for 100% EtOH extract. These results suggest that the main compound contributing to the antioxidant activity is a polar compound, and it is highly likely to be a low-molecular protein or a free amino acid. In conclusion, the honey bee drone pupa is excellent as a food resource and can be utilized as a new functional material for food and functional food.

High Throughput-compatible Screening of Anti-oxidative Substances by Insect Extract Library (약용곤충추출물 라이브러리를 이용한 항산화 활성의 초고속 검색)

  • Park, Ja-Young;Heo, Jin-Chul;An, Sang-Mi;Yun, Eun-Young;Han, Sang-Mi;Hwang, Jae-Sam;Kang, Seok-Woo;Yun, Chi-Young;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.12 no.5
    • /
    • pp.482-488
    • /
    • 2005
  • Oxidant stress is well-known for a pivotal parameter related to neuro-inflammatory diseases including Alzheimer's disease, Parkinson's disease, and ALS (Lou Gehrig's disease). In order to effectively screen for anti-inflammatory agents, we first established the infrastructure of high throughput screening for anti-oxidant agents from medicinal insect library extracted with water, methanol, ethanol, and dimethyl sulfoxide. By the screening system, we found that Tenodera angustipennis Saussure, Pyrocoela rupa Olivier and Papilio maackii Mntris had strong anti-oxidant activity. Moreover, Tenodera angustipennis Saussure and Tenodera aridifolia (Stoll) exhibited protection effects of cellular damage by treatment of an oxidant hydrogen peroxide. Together, the results suggest that some selected hits could be a potential agent against neuro-inflammation, although the in vivo studies should be clearly tested.

Effects of Dietary Animal Feed on the Growth Performance of Edible Insects (가축사료를 첨가한 먹이원의 급여가 부식성 식용곤충의 생육에 미치는 영향)

  • Song, Myung-Ha;Lee, Heui-Sam;Park, Kwanho
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.563-568
    • /
    • 2018
  • The insect industry is a promising agricultural resource and expected to grow steadily. In Korea, Gryllus bimaculatus and the larvae of Tenebrio molior, Protaetia brevitarsis, and Allomyrina dichotoma were listed as general food ingredients. As interest in these edible insects increases, rearing techniques and nutritious food sources are needed for mass production. In this study, wheat bran, dog feed, and pig feed were investigated for their effects on the larval growth of P. brevitarsis and A. dichotoma. When fermented sawdust with 30% wheat bran was used, the larval survival rate of P. brevitarsis and A. dichotoma (p=0.244341 and p=0.007966, respectively) and growth rate (p=0.001400 and p=0.000051, respectively) were significantly lower than those of the control (fermented sawdust with no supplement). Therefore, fermented sawdust with a high density of wheat bran was inappropriate for both insects. When fed fermented sawdust with 2.5 or 5% of dog and pig feed, the survival rate and growth rate of the larvae were higher than those of the control. Interestingly, the maximum larval weight with 2.5% dog feed was increased by $3.35{\pm}0.10g$ and $32.59{\pm}0.79g$ for P. brevitarsis and A. dichotoma, respectively. In addition, the larval period of both was shorter than that of the control by 40 days or more. Therefore, it is considered that animal feed can be used as a feed source for these edible insects.