• Title/Summary/Keyword: Input power factor

Search Result 883, Processing Time 0.023 seconds

Three-Phase AC-to-DC Resonant Converter Operating in High Power Factor Mode in High-Voltage Applications

  • Chaudhari, Madhuri A.;Suryawanshi, Hiralal M.;Kulwal, Abhishek;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.60-73
    • /
    • 2008
  • In this paper a three-phase ac-to-dc resonant converter with high input power factor and isolated output is proposed. To improve the input power factor of the converter, high frequency current is injected into the input of the three-phase diode bridge rectifier. It is injected through an impedance network consisting of a series of L-C branches from the output of the high frequency three-phase inverter. A narrow switching frequency variation is required to regulate the output voltage. A design example with different design curves is illustrated along with the component ratings. Experimental verification of the converter is performed on a prototype of 3 kW, 1000 V output, operating above 300 kHz. Experimental results confirm the concept of the proposed converter. Narrow switching frequency variation is required to regulate the output voltage.

An Investigation on Input Filter Design for Matrix Converters

  • Nguyen, Huu-Nhan;Dam, Duy-Hung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.178-179
    • /
    • 2017
  • Input filter is an essential component in a practical matrix converter (MC) system to generate the sinusoidal input currents. However, the input filter causes a displacement angle between the input current of MC and the source current. In this paper, we investigate the input filter design for MCs by considering the displacement angles of the input current and the input voltage to guarantee high input power factor (IPF) operation as well as low input current harmonic contents. Simulation results are provided to validate the input filter design with near unity input power factor and low total harmonic distortion (THD) of the input current.

  • PDF

A Control Strategy to Obtain Sinusoidal Input Currents of Matrix Converter under Unbalanced Input Voltages

  • Nguyen, Thanh-Luan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.114-116
    • /
    • 2018
  • This paper presents a control strategy to achieve the balanced sinusoidal output currents, as well as sinusoidal input currents for the matrix converter (MC) under unbalanced input voltages. By regulating the modulation index of the converter according to the instantaneous input voltages, the output currents are kept balanced and sinusoidal. In order to obtain sinusoidal input currents, the input power factor angle should be dynamically calculated based on the positive and negative sequence components of the input voltages. This paper proposes a simple method to construct the expected input power factor angle without the complicated sequence component extraction of input voltages. Simulation results are given to validate the effectiveness of the proposed control strategy.

  • PDF

A Study of AC-DC PWM Full-Bridge Integrated Converter Topologies

  • Gerry, Moschopoulos;Praveen Jain
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • Two AC-DC PWM full-bridge converters that can input current to improve input power factor while performing dc-dc conversion are investigated in this paper. Both converters are simple in that they are similar to the standard PWM full-bridge converter with a diode rectifier/LC low-pass filter input, and both can operate with a simple method of PWM control. In the paper, the operation of the converters is explained and their steady-state characteristics are discussed. The feasibility of the converters and their ability to meet EN61000-3-2 Class D Standards for electrical equipment are shown with results obtained from experimental prototypes. The performance of both converters in terms of dc bus voltage level, input power factor and efficiency is compared and discussed.

  • PDF

PWM-based Integral Sliding-mode Controller for Unity Input Power Factor Operation of Indirect Matrix Converter

  • Rmili, Lazhar;Hamouda, Mahmoud;Rahmani, Salem;Blanchette, Handy Fortin;Al-Haddad, Kamal
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1048-1057
    • /
    • 2017
  • An indirect matrix converter (IMC) is a modern power generation system that enables a direct ac/ac conversion without the need for any bulky and limited lifetime electrolytic capacitor. This system also allows four-quadrant operation, generation of sinusoidal output voltage waveforms with variable frequency and amplitude, and control of input power factor. This study proposes a pulse-width modulation-based sliding-mode controller to achieve unity input-power factor operation of the IMC independently of the active power exchanged with the grid, as well as a fast dynamic response. The designed equivalent control law determines, at each sampling period, the appropriate q-axis component of the modulated input current to be injected into the grid through the LC input filter. An integral term of the error is included in the expression of the sliding surface to increase the accuracy of the control method. A double space vector modulation method is used to synthesize the direction of the space vector of the input currents as required by the sliding-mode controller and the space vectors of the target output voltages. Simulation and experimental results are provided to show the effectiveness and evaluate the performance of the proposed control method.

Distortion Elimination for Buck PFC Converter with Power Factor Improvement

  • Xu, Jiangtao;Zhu, Meng;Yao, Suying
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.10-17
    • /
    • 2015
  • A quasi-constant on-time controlled buck front end in combined discontinuous conduction mode and boundary conduction mode is proposed to improve power factor (PF).When instantaneous AC input voltage is lower than the output bus voltage per period, the buck converter turns into buck-boost converter with the addition of a level comparator to compare input voltage and output voltage. The gate drive voltage is provided by an additional oscillator during distortion time to eliminate the cross-over distortion of the input current. This high PF comes from the avoidance of the input current distortion, thereby enabling energy to be delivered constantly. This paper presents a series analysis of controlling techniques and efficiency, PF, and total harmonic distortion. A comparison in terms of efficiency and PF between the proposed converter and a previous work is performed. The specifications of the converter include the following: input AC voltage is from 90V to 264V, output DC voltage is 80V, and output power is 94W.This converter can achieve PF of 98.74% and efficiency of 97.21% in 220V AC input voltage process.

An Efficiency improvement of Sinusoidal Converter for Power Factor Corection (역률 보정을 위한 정현 컨버터의 효율개선)

  • 서재호;이희승
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.432-435
    • /
    • 1997
  • This Paper proposes a novel sinusoidal converter which improves input power factor and input current waveform without any complicated switching modulation such as a pulse width modulation or a complicated feed-back control. It is composed of a full bridge diode, a pair of capacitors, a pair of inductors and a pair of switching devices. The configuration and control strategy are both simple however, the sinusoidal converter effectively reduces reactive power and hamonics included in a input line current. Excellent behavior of the proposed converter is verified by theoretical analysis and experimental results.

  • PDF

Analysis and Design of Interleaved Boost Power Factor Corrector on Two Stage AC/DC PFC Converter (2단 역률보상회로를 구성하는 Interleaved 승압형 컨버터의 해석 및 설계)

  • 허태원;손영대;김동완;김춘삼;박한석;우정인
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.343-351
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a first-stage converter in switch mode power supply. The first-stage converter plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Not only steady-state characteristics but also dynamic characteristics is considered. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

Single-Stage High-Power-Factor Electronic Ballast with a Symmetrical Class-DE Resonant Rectifier

  • Ekkaravarodome, Chainarin;Jirasereeamornkul, Kamon
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.429-438
    • /
    • 2012
  • This paper presents the use of a novel, single-stage high-power-factor electronic ballast with a symmetrical class-DE low-$d{\upsilon}$/$dt$ resonant rectifier as a power-factor corrector for fluorescent lamps. The power-factor correction is achieved by using a bridge rectifier to utilize the function of a symmetrical class-DE resonant rectifier. By employing this topology, the peak and ripple values of the input current are reduced, allowing for a reduced filter inductor volume of the EMI filter. Since the conduction angle of the bridge rectifier diode current was increased, a low-line current harmonic and a power factor near unity can be obtained. A prototype ballast, operating at an 84-kHz fixed frequency and a 220-$V_{rms}$, 50-Hz line input voltage, was utilized to drive a T8-36W fluorescent lamp. Experimental results are presented which verify the theoretical analysis.

contactless power conversion system using the Boost converter (승압형 컨버터를 활용한 비접촉식 전력변환 시스템)

  • Lee S. J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.214-217
    • /
    • 2003
  • The connectorless power supply system on that multi-contact causes confidence when the wiring reconstructed in the rear. As you see above, contact points between sets and indoor space cause inferior function of audio frequency so it needs to be eliminated. This paper explains the structure of connectorless power supply to supply the system with power crossing the air gap in the part of inductively in the connectorless power supply of both magnetic and electrical model. To get maximum output of electrical load, compensating capacitor compensates to show inter-inductance, lequeage-inductance reducing the track-inductance and access the conditions for resonance. At that time it accesses the maximum electric power. The small change of the value of compensating capacitor causes the changes of maximum electric power. Here the power electronics technology is used not only in the industrial machinery but also in the home appliances so the switching power supply is used to actualize the miniaturization, lightweight, and high efficiency. Generally the condenser input methods are widely used in the rectification circuit of switching power supply, but condenser input method generate great quantity of high frequency components because with this method the current flows in the power input filtering condenser only around value of peak of ac input voltage. To solve these problems, installation of power factor improve circuit on the front of filtering capacitence was considered. Several methods were suggested regarding, but the active filter method which makes smalliging and highly power factor possible are the produce main stream. IC for power factor improvement can be utilized by CMOS process proposing low power consumption. When the high power factor is considered seriously in the power factor improvement circuit, active filter method is selected. In the active filter method, the boost converter is used. Regarding this ·the boost converter is needed.

  • PDF