• Title/Summary/Keyword: Input and Output Buffer

Search Result 122, Processing Time 0.042 seconds

High Performance Routing Engine for an Advanced Input-Queued Switch Fabric (고속 입력 큐 스위치를 위한 고성능 라우팅엔진)

  • Jeong, Gab-Joong;Lee, Bhum-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.264-267
    • /
    • 2002
  • This paper presents the design of a pipelined virtual output queue routing engine for an advanced input-queued ATM switch, which has a serial cross bar structure. The proposed routing engine has been designed for wire-speed routing with a pipelined buffer management. It provides the tolerance of requests and grants data transmission latency between the routing engine and central arbiter using a new request control method that is based on a high-speed shifter. The designed routing engine has been implemented in a field programmable gate array (FPGA) chip with a 77MHz operating frequency, 16$\times$16 switch size, and 2.5Gbps/port speed.

  • PDF

VLSI Design of Processor IP for TCP/IP Protocol Stack (TCP/IP프로토콜 스택 프로세서 IP의 VLSI설계)

  • 최병윤;박성일;하창수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.927-930
    • /
    • 2003
  • In this paper, a design of processor IP for TCP/IP protocol stack is described. The processor consists of input and output buffer memory with dual bank structure, 32-bit RISC microprocessor core, DMA unit with on-the-fly checksum capability. To handle the various modes of TCP/IP protocol, hardware and software co-design approach is used rather than the conventional state machine based design. To eliminate delay time due to the data transfer and checksum operation, DAM module which can execute the checksum operation on-the-fly along with data transfer operation is adopted. By programming the on-chip code ROM of RISC processor differently. the designed stack processor can support the packet format conversion operations required in the various TCP/IP protocols.

  • PDF

An Optimum Architecture for Implementing SEED Cipher Algorithm with Efficiency (효율적인 SEED 암호알고리즘 구현을 위한 최적화 회로구조)

  • Shin Kwang-Cheul;Lee Haeng-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.49-57
    • /
    • 2006
  • This paper describes the architecture for reducing its size and increasing the computation rate in implementing the SEED algorithm of a 12B-bit block cipher, and the result of the circuit design. In order to increase the computation rate, it is used the architecture of the pipelined systolic array, This architecture is a simple thing without involving any buffer at the input and output part. By this circuit, it can be recorded 320 Mbps encryption rate at 10 MHz clock. We have designed the circuit with the VHDL coding, implemented with a FPGA of 50,000 gates.

  • PDF

Design of FFT processor with systolic architecture (시스토릭 아키텍쳐를 갖는 FFT 프로세서의 설계)

  • Kang, B.H.;Jeong, S.W.;Lee, J.K.;Choi, B.Y.;Shin, K.W.;Lee, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1488-1491
    • /
    • 1987
  • This paper describes 16-point FFT processor using systolic array and its implementation into VLSI. Designed FFT processor executes FFT/IFFT arithmetic under mode control and consists of cell array, array controller and input/output buffer memory. For design for testibility, we added built-in self test circuit into designed FFT processor. To verify designed 16-point FFT processor, logic simulation was performed by YSLOG on MICRO-VAXII. From the simulation results, it is estimated that the proposed FFT processor can perform 16-point FFT in about 4400[ns].

  • PDF

Development of Optical Burst Switching System for Next Generation Internet Services (차세대 인터넷 서비스를 위한 광버스트 교환 노드 설계)

  • Jang, Hee-Seon;Shin, Hyeun-Cheul;Aum, Ki-Chul;Lee, Sung-Hoon
    • Convergence Security Journal
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • In this paper, the development specification of the optical burst switching system (OBS) for next generation internet services is presented. The development specification includes the number of input/output nodes, the number of wavelengths, buffer capacity, the capacity/queue size of the controller and maximum burst assembly delay. From the performance parameters related to the OBS design, an mathematical model to maximize the throughput and minimize the data loss is presented, and then efficient heuristic algorithm is also presented to analyze the sensitivity of the system parameters.

  • PDF

Ultrasound Synthetic Aperture Beamformer Architecture Based on the Simultaneous Multi-scanning Approach (동시 다중 주사 방식의 초음파 합성구경 빔포머 구조)

  • Lee, Yu-Hwa;Kim, Seung-Soo;Ahn, Young-Bok;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.803-810
    • /
    • 2007
  • Although synthetic aperture focusing techniques can improve the spatial resolution of ultrasound imaging, they have not been employed in a commercial product because they require a real-time N-channel beamformer with a tremendously increased hardware complexity for simultaneous beamforming along M multiple lines. In this paper, a hardware-efficient beamformer architecture for synthetic aperture focusing is presented. In contrast to the straightforward design using NM delay calculators, the proposed method utilizes only M delay calculators by sharing the same values among the focusing delays which should be calculated at the same time between the N channels for all imaging points along the M scan lines. In general, synthetic aperture beamforming requires M 2-port memories. In the proposed beamformer, the input data for each channel is first upsampled with a 4-fold interpolator and each polyphase component of the interpolator output is stored into a 2-port memory separately, requiring 4M 2-port memories for each channel. By properly limiting the area formed with the synthetic aperture focusing, the input memory buffer can be implemented with only 4 2-port memories and one short multi-port memory.

Low-Noise MEMS Microphone Readout Integrated Circuit Using Positive Feedback Signal Amplification

  • Kim, Yi-Gyeong;Cho, Min-Hyung;Lee, Jaewoo;Jeon, Young-Deuk;Roh, Tae Moon;Lyuh, Chun-Gi;Yang, Woo Seok;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.235-243
    • /
    • 2016
  • A low-noise readout integrated circuit (ROIC) for a microelectromechanical systems (MEMS) microphone is presented in this paper. A positive feedback signal amplification technique is applied at the front-end of the ROIC to minimize the effect of the output buffer noise. A feedback scheme in the source follower prevents degradation of the noise performance caused by both the noise of the input reference current and the noise of the power supply. A voltage booster adopts noise filters to cut out the noise of the sensor bias voltage. The prototype ROIC achieves an input referred noise (A-weighted) of -114.2 dBV over an audio bandwidth of 20 Hz to 20 kHz with a $136{\mu}A$ current consumption. The chip is occupied with an active area of $0.35mm^2$ and a chip area of $0.54mm^2$.

A Low Power Voltage Controlled Oscillator with Bandwidth Extension Scheme (대역폭 증가 기법을 사용한 저전력 전압 제어 발진기)

  • Lee, Won-Young;Lee, Gye-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.69-74
    • /
    • 2021
  • This paper introduces a low-power voltage-controlled oscillator(VCO) with filters that consist of resistors and capacitors. The proposed VCO contains a 5-stage current mode buffer, and each buffer cell has a resistor-capacitor filter that connects input and output terminals. The filter adds a zero to the buffer cell. Because the zero moves the oscillation condition to high frequencies, the proposed VCO can generate a high frequency clock with low power consumption. The proposed circuit has been designed with 0.18 ㎛ CMOS process. The power consumption is 9.83 mW at 2.7 GHz. The proposed VCO shows 3.64 pJ/Hz in our simulation study, whereas the conventional circuit shows 4.79 pJ/Hz, indicating that our VCO achieves 24% reduction in power consumption.

A Study on Signal Integrity of High Speed Interface for Ultra High Definition Video Pattern Control Signal Generator (초고해상도 영상패턴 제어 신호발생기의 고속 인터페이스 신호 무결성 실험에 관한 연구)

  • Son, Hui-Bae;Jun, June-Su;Kwon, Sai-Hoan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.150-152
    • /
    • 2014
  • 디지털 평판 LCD TV의 영상신호 전송에 LVDS가 사용되어 왔으나 케이블간의 타이밍 문제가 대두되고 초고해상도의 컬러 Depth 확장으로 인해 보다 빠른 전송속도가 요구되어진다. V-by-One HS는 초고해상도 영상처리 IC 및 TCON 간의 새로운 인터페이스 기술로서 최대 3840*2160@240Hz의 해상도 영상구현이 가능하다. 동작 주파수 대역의 공진모드 전압 분포와 V-by-One HS IBIS(Input/Output Buffer Information Specification) 모델 시뮬레이션을 통하여 PCB 설계 방법을 제안한다. 본 논문에서는 V-by-One HS 인터페이스 기술을 사용하여 초고해상도 영상패턴 제어 신호발생기의 시스템 구성을 제안하고 고속영상 신호에 대한 신호 무결성을 검증하고자 한다.

  • PDF

Design of Switching Fabric Supporting Variable Length Packets (가변 길이 패킷을 지원하는 스위칭 패브릭의 설계)

  • Ryu, Kyoung-Sook;Kim, Mu-Sung;Choe, Byeong-Seog
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.311-315
    • /
    • 2008
  • The switching fabric used to make high speed switching for packet transfer between input and output interface in recent internet environments. Without making any changes in order to remain ATM switching fabric, the existing structures should split/reassemble a packet to certain size, set aside cross-point buffer and will put loads on the system. In this paper, we proposed a new switch architecture, which has separated data memory plane and switching plane packet data will be stored on the separate memory structure and simultaneously only the part of the memory address pointers can pass the switching fabric. The small mini packets which have address pointer and basic information would be passed through the switching fabric. It is possible to achieve the remarkable switching performance than other switch fabrics with contending variable length packets.