• 제목/요약/키워드: Input Parameters

Search Result 3,498, Processing Time 0.031 seconds

Characteristic Impedances in Low-Voltage Distribution Systems for Power Line Communication

  • Kim, Young-Sung;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • The input and output impedances in a low voltage distribution system is one of the most important matters for power line communication because from the viewpoint of communication, the attenuation characteristic of the high frequency signals is greatly caused by impedance mismatch during sending and receiving. The frequency range is from 1MHz to 30MHz. Therefore, this paper investigates the input and output impedances in order to understand the characteristic of high frequency signals in the low voltage distribution system between a pole transformer and an end user. For power line communication, the model of Korea's low voltage distribution system is proposed in a residential area and then the low voltage distribution system is set up in a laboratory. In the low voltage distribution system, S parameters are measured by using a network analyzer. Finally, input and output impedances are calculated using S parameters.

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

Tuning PID Controllers for Unstable Systems with Dead Time based on Dual-Input Describing Function(DIDF) Method (DIDF를 적용한 PID 제어기의 파라미터 설정법 - 불감시간을 가지는 불안정한 시스템의 경우)

  • Choe, YeonWook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.509-518
    • /
    • 2014
  • Though various techniques have been studied as a way of adjusting parameters of PID controllers, no perfect method of determining parameters is available to date. Especially the deign of PID controller for unstable processes with dead time(UPWDT) is even more difficult due to various reasons. Generally the existing design procedures for UPWDT involve deriving formulas to meet gain and phase margin specifications, or using inner loop to stabilize UPWDT before applying PID controller. In this paper, the dual-input describing function(DIDF) method is proposed, by which the performance and robustness of the closed-loop system can be improved. The method is based on moving the critical point (-1+j0) of Nyquist stability to a new position arbitrarily selected on the complex plane. This can be done by determining appropriate coefficients of the DIDF. As a result, we can easily determine parameters of PID-type controller by using existing conventional tuning methods for stable or unstable systems. Simulation results are included to show the effectiveness of the proposed method.

Probabilistic Safety Assessment for High Level Nuclear Waste Repository System

  • Kim, Taw-Woon;Woo, Kab-Koo;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.53-72
    • /
    • 1991
  • An integrated model is developed in this paper for the performance assessment of high level radioactive waste repository. This integrated model consists of two simple mathematical models. One is a multiple-barrier failure model of the repository system based on constant failure rates which provides source terms to biosphere. The other is a biosphere model which has multiple pathways for radionuclides to reach to human. For the parametric uncertainty and sensitivity analysis for the risk assessment of high level radioactive waste repository, Latin hypercube sampling and rank correlation techniques are applied to this model. The former is cost-effective for large computer programs because it gives smaller error in estimating output distribution even with smaller number of runs compared to crude Monte Carlo technique. The latter is good for generating dependence structure among samples of input parameters. It is also used to find out the most sensitive, or important, parameter groups among given input parameters. The methodology of the mathematical modelling with statistical analysis will provide useful insights to the decision-making of radioactive waste repository selection and future researches related to uncertain and sensitive input parameters.

  • PDF

Comparison of Input Data for Numerical Analysis of Rock Structures (암반구조물의 수치해석을 위한 입력자료지 비교분석)

  • 장명환;양형식
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.221-229
    • /
    • 1999
  • Parameters of failure criteria, compressive strength and elastic modulus are most important for design and stability analysis of rock structure using numerical analysis. In this study, it suggests that the application of input data for numerical analysis by the literature study and the result of the 150 sets of triaxial compressive test. There was much different between parameters of failure criterion suggested by Hoek-Brown and parameters resulted from the analysis using 150 sets of triaxial compressive test. But the converting equations of compressive strength have had an interrelation with RMR. However, the converting of elastic of elastic modulus were different as chosen of equation, and the equation by Nicholson et at was more useful than others.

  • PDF

Identification of Fuzzy System Driven to Parallel Genetic Algorithm (병렬유전자 알고리즘을 기반으로한 퍼지 시스템의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.201-203
    • /
    • 2007
  • The paper concerns the successive optimization for structure and parameters of fuzzy inference systems that is based on parallel Genetic Algorithms (PGA) and information data granulation (IG). PGA is multi, population based genetic algorithms, and it is used tu optimize structure and parameters of fuzzy model simultaneously, The granulation is realized with the aid of the C-means clustering. The concept of information granulation was applied to the fuzzy model in order to enhance the abilities of structural optimization. By doing that, we divide the input space to form the premise part of the fuzzy rules and the consequence part of each fuzzy rule is newly' organized based on center points of data group extracted by the C-Means clustering, It concerns the fuzzy model related parameters such as the number of input variables to be used in fuzzy model. a collection of specific subset of input variables, the number of membership functions according to used variables, and the polynomial type of the consequence part of fuzzy rules, The simultaneous optimization mechanism is explored. It can find optimal values related to structure and parameter of fuzzy model via PGA, the C-means clustering and standard least square method at once. A comparative analysis demonstrates that the Dnmosed algorithm is superior to the conventional methods.

  • PDF

Influence of process parameters on the kerfwidth for the case of laser cutting of CPS 1N sheet using high power CW Nd:YAG laser (고출력 연속파형 Nd:YAG 레이저를 이용한 CSP 1N 냉연강판 절단시 공정변수의 절단폭에 미치는 영향)

  • Kim Min-Su;Lee Sang-Hoon;Park Hyung-Jun;Yoo Young-Tae;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.19-26
    • /
    • 2005
  • The objective of this study is to investigate the influence of process parameters, such as power of laser, cutting speed of laser and material thickness, on the practical cutting region and the kerfwidth fer the case of cutting of CSP IN sheet using high power Nd:YAC laser in continuous wave(CW) mode. In order to obtain the practical cutting region and the relationship between process parameters on the kerfwidth, several laser cutting experiments are carried out. The effective heat input is introduced to consider the influence of power and cutting speed of laser on the kerfwidth together. From the results of experiments, the allowable cutting region and the relationship between the effective heat input and kerfwidth fur the case of cutting of CSP 1N sheet using high power CW Nd:YAG laser have been obtained to improve the dimensionalaccuracyofthecutarea.

Effect of Process Parameters on Condenser Discharge Weldability of Thin Gauge Steel (박판 강재의 컨덴서 용접성에 미치는 용접변수의 영향)

  • 김기철;이목영;임태진
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.49-56
    • /
    • 1997
  • Effect of process parameters on the quality of condenser discharge weld for coated sheet steels was discussed. The welding specimens were coated with pure Zn of 20/20 g/m2 in the production line. Direct measurements of welding parameters such as the discharge current, the pressures and the voltage drop across the electrodes were carried out with welding process monitoring system. High speed camera was also utilized to analyze the weld formation process. Test results indicated that the relation between weld strength and applied energy was stabilized at the acceptable welding heat input range. It was thought that the acceptable welding heat input should be redefined based on the monitored data because the calculated value of the welding heat input could hardly be utilized if the discharge condition was changed. Mechanical test results and high speed photographs showed that expulsion deteriorated the weld quality and the strength at the same time especially when the size of the spatter was large enough to carry the molten metal, which should form the nugget, out of the welding spot. Results also demonstrated that the discharge current should be applied at the appropriate time during the process because sufficient nugget was not produced if the time was deviated from the optimum range.

  • PDF

Parameter Estimation of Single and Decentralized Control Systems Using Pulse Response Data

  • Cheres, Eduard;Podshivalov, Lev
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2003
  • The One Pass Method (OPM) previously presented for the identification of single input single output systems is used to estimate the parameters of a Decentralized Control System (DCS). The OPM is a linear and therefore a simple estimation method. All of the calculations are performed in one pass, and no initial parameter guess, iteration, or powerful search methods are required. These features are of interest especially when the parameters of multi input-output model are estimated. The benefits of the OPM are revealed by comparing its results against those of two recently published methods based on pulse testing. The comparison is performed using two databases from the literature. These databases include single and multi input-output process transfer functions and relevant disturbances. The closed loop responses of these processes are roughly captured by the previous methods, whereas the OPM gives much more accurate results. If the parameters of a DCS are estimated, the OPM yields the same results in multi or single structure implementation. This is a novel feature, which indicates that the OPM is a convenient and practice method for the parameter estimation of multivariable DCSs.

A Practical Tuning Method of Dual-Input PSS and its Application to Large Power System (다중-입력 PSS의 실제적인 튜닝 방법과 대형 전력 시스템에의 적용)

  • Kim, Dong-Joon;Moon, Young-Hwan;Hur, Jin;Shin, Jeong-Hoon;Kim, Tae-Kyun;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.362-370
    • /
    • 2002
  • This paper describes the practical tuning method of dual-input PSS and its application to Muju P/P #2 with Proto PSS, which is based on DSP technology and uses both frequency and power. First, the model parameters of generator system used in this paper have been derived from the generator characteristic testing. Then, in the selection of PSS parameters, the Bode plot is plotted in order to tune the PSS's time constants which are able to compensate the phase lagging due to generator and excitation system. In addition, the eigenvalue analysis is also performed for determining a reliable PSS gain, $K_{s}$. Finally, the transient stability program has been utilized to verify the safe operation of Proto PSS against the predictable disturbances such as the AVR-step test and generator unloading test. In on-site test, the simulated results have been identically duplicated by implementing AVR step test in Muju P/P #2 with Proto PSS, which has the previously designed PSS parameters.s.