• Title/Summary/Keyword: Input Amplitude

Search Result 484, Processing Time 0.025 seconds

Swell Effect Correction for the High-resolution Marine Seismic Data (고해상 해저 탄성파 탐사자료에 대한 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.240-249
    • /
    • 2013
  • The seismic data quality of marine geological and engineering survey deteriorates because of the sea swell. We often conduct a marine survey when the swell height is about 1 ~ 2 m. The swell effect correction is required to enhance the horizontal continuity of seismic data and satisfy the resolution less than 1 m. We applied the swell correction to the 8 channel high-resolution airgun seismic data and 3.5 kHz subbottom profiler (SBP) data. The correct sea bottom detection is important for the swell correction. To detect the sea bottom, we used maximum amplitude of seismic signal around the expected sea bottom, and picked the first increasing point larger than threshold value related with the maximum amplitude. To find sea bottom easily in the case of the low quality data, we transformed the input data to envelope data or the cross-correlated data using the sea bottom wavelet. We averaged the picked sea bottom depths and calculated the correction values. The maximum correction of the airgun data was about 0.8 m and the maximum correction of two kinds of 3.5 kHz SBP data was 0.5 m and 2.0 m respectively. We enhanced the continuity of the subsurface layer and produced the high quality seismic section using the proper methods of swell correction.

Study on Strain Measurement of Agricultural Machine Elements Using Microcomputer (Microcomputer를 이용(利用)한 농업기계요소(農業機械要素)의 Strain 측정(測定)에 관(關)한 연구(硏究))

  • Kim, Kee Dae;Kim, Tae Kyun;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 1981
  • To design more efficient agricultural machinery, the accurately measuring system among many other factors is essential. A light-beam oscillographic recorder is generally used in measuring dynamic strain but it is not compatible with the extremely high speed measuring system such as 1,000 m/s, also is susceptable to damage due to vibration while using the system in field. The recorder used light sensitive paper for strip chart recording. The reading and analysis of data from the strip charts is very cumbersome, errorneous and time consuming. A microcomputer was interfaced with A/D converter, microcomputer program was developed for measuring, system calibration was done and the strain generated from a cantilever beam vibrator was measured. The results are summarized as follows. 1. Microcomputer program was developed to perform strain measuring of agricultural machine elements and could be controled freely the measuring intervals, no. of channels and no. of data. The maximum measuring speed was $62{\mu}s$. 2. Calibration the system was performed with triangle wave generated from a function generator and checked by an oscilloscope. The sampled data were processed using HP 3000 minicomputer of Chungnam National University computer center the graphical results were triangle same as input wave and so the system have been out of phase distorsion and amplitude distorsion. 3. The strain generated from a cantilever beam vibrator which has free vibration period of 0.019 second were measured by the system controlled to have l.0 ms of time interval and its computer output showing vibration curve which is well filted to theoretical value. 4. Using microcomputer on measuring the strain of agricultural machine elements could not only save analyzing time and recording papers but also get excellent adaptation to field experiment, especially in measurement requiring high speed and good precision.

  • PDF

Temporal and Spatial Characteristics of Visual and Somatosensory Integration in Normal Adult Brain (정상성인의 시각 및 촉각 통합 작용 시 뇌신경세포의 전기생리적활동의 시간 및 공간적 특성: 예비실험)

  • Ju, Yu-Mi;Kim, Ji-Hyun
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • Objective : Multisensory integration (MSI) is the essential process to use diverse sensory information for cognitive task or execution of motor action. Especially, visual and somatosensory integration is critical for motor behavior and coordination. This study was designed to explain spatial and temporal characteristics of visual and somatosensory integration by neurophysiological research method that identifies the time course and brain location of the SI process. Methods : Electroencephalography (EEG) and event-related potential (ERP) is used in this study in order to observe neural activities when integrating visual and tactile input. We calculate the linear summation (SUM) of visual-related potentials (VEPs) and somatosensory-related potentials (SEPs), and compared the SUM with simultaneously presented visual-tactile ERPs(SIM) Results : There were significant differences between the SIM and SUM in later time epochs (about 200-300ms) at contralateral somatosensory areas (C4) and occipital cortices (O1&O2). The amplitude of the SIM was mathematically larger than the summed signals, implying that the integration made some extra neural activities. Conclusion : This study provides some empirical neural evidence of that multisensory integration is more powerful than just combing two unisensory inputs in the brain and ERP data reveals neural signature relating to multisensory integrative process. Since this study is preliminary pilot study, larger population and criteria are needed for level of the significance. Further study is recommended to consider issues including effect of internally-driven attention and laterality of interaction to make the evidence by this study solid.

  • PDF

Fatigue Life of the Repair TIG Welded Hastelloy X Superalloy

  • SIHOTANG, Restu;CHOI, Sang-Kyu;PARK, Sung-Sang;BAEK, Eung-Ryul
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.26-30
    • /
    • 2015
  • Hastelloy X in this study was applied in jet engine F-15 air fighter as shroud to isolate the engine from outer skin. After 15 years operation at elevated temperature the mechanical properties decreased gradually due to the precipitation of continues second phases in the grain boundaries and precipitated inside the grain. The crack happened at the edge of the shroud due to the thermal and mechanical stress from jet engine. Selective TEM analysis found that the grain boundaries consist of $M_{23}C_6$ carbide, $M_6$ Ccarbide and small percentage of sigma(${\sigma}$) phase. Furthermore, it was confirmed the nano size of ${\sigma}$ and miu (${\mu}$) phase inside the grain. In this study, it was investigated the microstructure of the degraded shroud component and HAZ of repair welded shroud. In the HAZ, it was observed the dissolution of the $M_{23}C_6$ carbides and smaller precipitates, the migration of the undissolved larger $M_{23}C_6$ carbide and $M_6$ Ccarbide. It is also observed the liquation due to the simply melt of the segregated precipitates in the grain boundaries. Interestingly, the segregated second phases which simply melt in the grain boundaries more easily happened at higher heat input welding condition. High temperature tensile test was done at $300^{\circ}C$, $700^{\circ}C$ and $900^{\circ}C$. It was obtained that the toughness of welded sample is lower compare to the non-welded sample. The solution heat treatment at $1170^{\circ}C$ for 5 minutes was suggested to obtain a better mechanical properties of the shroud. The high cycle fatigue number of the repair welded shroud shows a much lower compare to the shroud. In addition, the high cycle fatigue number at room temperature after solution heat treatment was almost double compare to the before solution heat treatment under 420-500MPa stress amplitude. However, the high cycle fatigue number of repaired welded sample was shown a much lower compare to the non- welded shroud and solution treated shroud. One of the main reasons to decrease the tensile strength and the high cycle fatigue properties of the repair welded shroud is the formation of the liquid phase in HAZ.

The Improvement of Convergence Characteristic using the New RLS Algorithm in Recycling Buffer Structures

  • Kim, Gwang-Jun;Kim, Chun-Suck
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-698
    • /
    • 2003
  • We extend the sue of the method of least square to develop a recursive algorithm for the design of adaptive transversal filters such that, given the least-square estimate of this vector of the filter at iteration n-l, we may compute the updated estimate of this vector at iteration n upon the arrival of new data. We begin the development of the RLS algorithm by reviewing some basic relations that pertain to the method of least squares. Then, by exploiting a relation in matrix algebra known as the matrix inversion lemma, we develop the RLS algorithm. An important feature of the RLS algorithm is that it utilizes information contained in the input data, extending back to the instant of time when the algorithm is initiated. In this paper, we propose new tap weight updated RLS algorithm in adaptive transversal filter with data-recycling buffer structure. We prove that convergence speed of learning curve of RLS algorithm with data-recycling buffer is faster than it of exiting RLS algorithm to mean square error versus iteration number. Also the resulting rate of convergence is typically an order of magnitude faster than the simple LMS algorithm. We show that the number of desired sample is portion to increase to converge the specified value from the three dimension simulation result of mean square error according to the degree of channel amplitude distortion and data-recycle buffer number. This improvement of convergence character in performance, is achieved at the B times of convergence speed of mean square error increase in data recycle buffer number with new proposed RLS algorithm.

Motor Imagery Brain Signal Analysis for EEG-based Mouse Control (뇌전도 기반 마우스 제어를 위한 동작 상상 뇌 신호 분석)

  • Lee, Kyeong-Yeon;Lee, Tae-Hoon;Lee, Sang-Yoon
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.2
    • /
    • pp.309-338
    • /
    • 2010
  • In this paper, we studied the brain-computer interface (BCI). BCIs help severely disabled people to control external devices by analyzing their brain signals evoked from motor imageries. The findings in the field of neurophysiology revealed that the power of $\beta$(14-26 Hz) and $\mu$(8-12 Hz) rhythms decreases or increases in synchrony of the underlying neuronal populations in the sensorymotor cortex when people imagine the movement of their body parts. These are called Event-Related Desynchronization / Synchronization (ERD/ERS), respectively. We implemented a BCI-based mouse interface system which enabled subjects to control a computer mouse cursor into four different directions (e.g., up, down, left, and right) by analyzing brain signal patterns online. Tongue, foot, left-hand, and right-hand motor imageries were utilized to stimulate a human brain. We used a non-invasive EEG which records brain's spontaneous electrical activity over a short period of time by placing electrodes on the scalp. Because of the nature of the EEG signals, i.e., low amplitude and vulnerability to artifacts and noise, it is hard to analyze and classify brain signals measured by EEG directly. In order to overcome these obstacles, we applied statistical machine-learning techniques. We could achieve high performance in the classification of four motor imageries by employing Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) which transformed input EEG signals into a new coordinate system making the variances among different motor imagery signals maximized for easy classification. From the inspection of the topographies of the results, we could also confirm ERD/ERS appeared at different brain areas for different motor imageries showing the correspondence with the anatomical and neurophysiological knowledge.

  • PDF

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.

A Design of the New Three-Line Balun (새로운 3-라인 발룬 설계)

  • 이병화;박동석;박상수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.750-755
    • /
    • 2003
  • This paper proposes a new three-line balun. The equivalent circuit of the proposed three-line balun is presented, and impedance matrix[Z]of the equivalent circuit is derived from the relationship between the current and voltage at each port. The design equation for a given set of balun impedance at input and output ports is presented using[S]parameters, which is transferred fom impedance matrix,[Z]. To demonstrate the feasibility and validity of design equation, multi-layer ceramic(MLC) chip balun operated in the 2.4 GHz ISM band frequency is designed and fabricated by the use of the low temperature co-fired ceramic(LTCC) technology. By employing both the proposed new three-line balun equivalent circuit and multi-layer configuration provided by LTCC technology, the 2012 size MLC balun is realized. Measured results of the multi-layer LTCC three-line balun match well with the full-wave electromagnetic simulation results, and measured in band-phase and amplitude balances over a wide bandwidth are excellent. This proposed balun is very easily applicable to multi-layer structure using LTCC as shown in the paper, and also can be realized with microstrip lines on PCB. This distinctive performance is very favorable for wireless communication systems such as wireless LAN(Local Area Network) and Bluetooth applications.

Implementation of the Digital Current Control System for an Induction Motor Using FPGA (FPGA를 이용한 유도 전동기의 디지털 전류 제어 시스템 구현)

  • Yang, Oh
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.21-30
    • /
    • 1998
  • In this paper, a digital current control system using a FPGA(Field Programmable Gate Array) was implemented, and the system was applied to an induction motor widely used as an industrial driving machine. The FPGA designed by VHDL(VHSIC Hardware Description Language) consists of a PWM(Pulse Width Modulation) generation block, a PWM protection block, a speed measuring block, a watch dog timer block, an interrupt control block, a decoder logic block, a wait control block and digital input and output blocks respectively. Dedicated clock inputs on the FPGA were used for high-speed execution, and an up-down counter and a latch block were designed in parallel, in order that the triangle wave could be operated at 40 MHz clock. When triangle wave is compared with many registers respectively, gate delay occurs from excessive fan-outs. To reduce the delay, two triangle wave registers were implemented in parallel. Amplitude and frequency of the triangle wave, and dead time of PWM could be changed by software. This FPGA was synthesized by pASIC 2SpDE and Synplify-Lite synthesis tool of Quick Logic company. The final simulation for worst cases was successfully performed under a Verilog HDL simulation environment. And the FPGA programmed for an 84 pin PLCC package was applied to digital current control system for 3-phase induction motor. The digital current control system of the 3 phase induction motor was configured using the DSP(TMS320C31-40 MHz), FPGA, A/D converter and Hall CT etc., and experimental results showed the effectiveness of the digital current control system.

  • PDF

Analysis of Optimum Design of Stepped Bar Horn for 20kHz Metal Ultrasonic Welding (20kHz 급 금속 초음파 융착용 스텝형 바 혼의 최적설계)

  • Kim, Jisun;Kim, Jaewoong;Kim, In-ju;Seo, Joowhan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.94-101
    • /
    • 2019
  • In this study, the FEM technique was applied to design the shape of the horn that transmits ultrasonic vibration energy to the base material, and the shape of the welding horn with a one-wavelength bar shape used in the 20kHz region was designed. The shape design of the horn was performed by applying the rod longitudinal vibration theory to Ansys APDL (Ansys Parametric Design Language). Twenty-five models were designed using the ratio of the area of the input and output surfaces of the vibration and the length of the horn to derive the appropriate horn shape. The horn was designed with a total length of 130mm, a step length of 65mm, and an output area of 28.79mm. The horn was fabricated using the optimized dimensions, and the vibration and displacement characteristics of the horn were evaluated using the measurement system. Finally, a uniform longitudinal step horn was designed, and more than 97.4% of the uniformity of the tip was secured. The amplitude ratio of the optimized horn was improved by 51%.