• Title/Summary/Keyword: Input/output Control

Search Result 2,504, Processing Time 0.038 seconds

Identification of SMES by ANN and Stability Analysis Included SMES (신경회로망에 의한 SMES 표현과 안정도 해석)

  • Kang, Hyoung-Goo;Kim, Sung-Il;Lim, Jae-Yoon;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.717-719
    • /
    • 1996
  • An artificial neural network(ANN) modeling is presented using the Input-output power characteristics of SMES. When using the ANN which functions as a model-free system, network construction and determination of learning parameters are carefully chosen to represent the complicated nonlinear input-output relation from the black-boxed SMES system. The proposed ANN-based SMES model is applied to analyse the power system stability and the simulation results provide the property of this approach.

  • PDF

Limited Feedback Interference Alignment in MIMO Power Line Communication with Common-mode Reception

  • Ahiadormey, Roger Kwao;Anokye, Prince;Park, Seok-Hwan;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • This paper considers a multiple-input multiple-output (MIMO) power line communication (PLC) network where interference alignment (IA) technique is used to mitigate the interference that arises in multi-user networks. IA as a precoding technique requires perfect channel state information (CSI) to achieve maximum multiplexing gain. Due to the common-mode reception at the receiver ports, we assume imperfect CSI for the IA precoding design. Here, the CSI is quantized and sent via feedback to the transmit ports. For different levels of CSI quantization, we evaluate the performance of various IA algorithms via Monte Carlo simulations. Simulation results reveal the superior performance of the proposed scheme due to common-mode reception in IA MIMO PLC networks. It is shown that for a quantization level of 5 bits, the CM reception improves the sum-rate by up to 70%.

A Study on Application of Adaptive Control Theory to D.C. Motor Speed Control (직류전동기의 속도제어에 대한 적응제어이론의 적용에 관한 연구)

  • Kim, Seong-Guk;Kim, Do-Hyeon;Choe, Gye-Geun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 1981
  • In this paper, the application of model reference adaptive control theory to the D.C motor speed control using the microprocessor is studied. It is shown that with the use of an adaptive control algorithm the error between output of the motor and the reference model, which is approximated to first order, can be conve to zero. By computer simulation and the practical implementation with the microprocessor M 6800, can be concluded that the adaptive control system adapts well to the rapid change of the load and reference inputs.

  • PDF

Adaptive Fuzzy Output Feedback Control based on Observer for Nonlinear Heating, Ventilating and Air Conditioning System

  • Baek, Jae-Ho;Hwang, Eun-Ju;Kim, Eun-Tai;Park, Mi-gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.76-82
    • /
    • 2009
  • A Heating, Ventilating and Air Conditioning (HVAC) system is a nonlinear multi-input multi-output (MIMO) system. This system is very difficult to control the temperature and the humidity ratio of a thermal space because of complex nonlinear characteristics. This paper proposes an adaptive fuzzy output feedback control based on observer for the nonlinear HVAC system. The nonlinear HVAC system is linearized through dynamic extension. State observers are designed for estimating state variables of the HVAC system. Fuzzy systems are employed to approximate uncertain nonlinear functions of the HVAC system with unavailable state variables. The obtained controller compares with an adaptive feedback controller. Simulation is given to demonstrate the effectiveness of our proposed adaptive fuzzy method.

Development of Nonlinear Control Algorithm for Automatic Berthing of Ships

  • Won, Moon-Cheol;Hong, Seong-Kuk;Jung, Yun-Ha;Kim, Sun-Young;Son, Nam-Sun;Yoon, Hyun-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.359-362
    • /
    • 2006
  • This study develops an automatic berthing control algorithm for ships with a bow thruster and a stern thruster as well as a rudder. A nonlinear mathematical model for low speed maneuvering of ships is used to develop a MIMO(multi-input multi-output) nonlinear control algorithm. The algorithm consists of two parts, which are forward velocity control and heading angle control. The control algorithm is designed based on the longitudinal and yaw dynamic models of ships. The desired heading angle is obtained by the so called "Line of Sight" method. An optimal control force allocation method of the rudder and the thrusters is suggested. The nonlinear control algorithms are tested by numerical simulations using MATLAB, and shows good tracking performances.

  • PDF

Voltage Sensorless Control for Three-Phase Voltage Source PWM Converter (3상 전압형 PWM 컨버터의 전압 센서리스 제어)

  • Heo, Tae-Won;Cho, Kwang-Seung;Kim, Young-Bin;Seo, Jung-Ki;Cho, Yong-Gil;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2656-2658
    • /
    • 1999
  • This paper presents a control scheme for a three-phase PWM converter system without any voltage sensors. Two input currents and one load current are measured. In a general PWM converter system, the required AC input and DC output voltage values in order to control the converter are estimated using the differential equations of the converter from the measured input currents and load current values in the switch modes of the converter circuit. The PI controller is used as DC voltage controller and sinusoidal tracking controller which tracks directly AC input current is used as input current controller. The Proposed method is verified by simulations. This paper describes the estimation method and configuration of the controller, and discusses steady state and transient performances of the converter

  • PDF

A Robust Model Reference Adaptive controller Design -SISO Case- (강인한 모델기준 적응제어기의 설계 -단입력 단출력 경우)

  • Seok, Ho-Dong;Lyou, Joon;Chung, Tae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1073-1076
    • /
    • 1991
  • This paper presents a robust model reference adaptive controller for continuous-time single-input single-output linear time-invariant systems which are subjected to output-dependent disturbances as well as bounded external disturbances. In the derived controller form, an additional output error feedback term is included to over-ride the destabilizing effects by the output-dependent disturbances.

  • PDF

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

The Control of Flexible Beam using Nonlinear Compensator with Dual-Input Describing Function (쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 제어)

  • 권세현;이형기;최부귀
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.644-650
    • /
    • 1998
  • In this paper , a state space model for flexible beam is presented using the assumed-modes approach. The state space equation is derived for a flexible beam in which one end is connected to a motor and is driven by a torque equation and the other end is free. Many of the transfer function proposed thus far use the torque to the flexible beam as the input and the tip deflection of the flexible beam as the output. The Technique for the analysis and synthesis of the dual-input describing function(DIDF) is introduced here and the construction of a non-linear compensator, based on this technique, is proposed. This non-linear compensator, properly connected in the direct path of a closed-loop linear or non-linear control system. The above non-linear network is used to compensate linear and non-linear systems for instability, limit cycles, low speed of response and static accuracy. The effectiveness of the proposed scheme is demonstrated through computer simulation and experimental results.

  • PDF

Simultaneous Control of Frequency Fluctuation and Battery SOC in a Smart Grid using LFC and EV Controllers based on Optimal MIMO-MPC

  • Pahasa, Jonglak;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.601-611
    • /
    • 2017
  • This paper proposes a simultaneous control of frequency deviation and electric vehicles (EVs) battery state of charge (SOC) using load frequency control (LFC) and EV controllers. In order to provide both frequency stabilization and SOC schedule near optimal performance within the whole operating regions, a multiple-input multiple-output model predictive control (MIMO-MPC) is employed for the coordination of LFC and EV controllers. The MIMO-MPC is an effective model-based prediction which calculates future control signals by an optimization of quadratic programming based on the plant model, past manipulate, measured disturbance, and control signals. By optimizing the input and output weights of the MIMO-MPC using particle swarm optimization (PSO), the optimal MIMO-MPC for simultaneous control of the LFC and EVs, is able to stabilize the frequency fluctuation and maintain the desired battery SOC at the certain time, effectively. Simulation study in a two-area interconnected power system with wind farms shows the effectiveness of the proposed MIMO-MPC over the proportional integral (PI) controller and the decentralized vehicle to grid control (DVC) controller.