• 제목/요약/키워드: Inositol trisphosphate

검색결과 52건 처리시간 0.019초

Peptidoglycan Induces the Production of Interleukin-8 via Calcium Signaling in Human Gingival Epithelium

  • Son, Aran;Shin, Dong Min;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권1호
    • /
    • pp.51-57
    • /
    • 2015
  • The etiology of periodontal disease is multifactorial. Exogenous stimuli such as bacterial pathogens can interact with toll-like receptors to activate intracellular calcium signaling in gingival epithelium and other tissues. The triggering of calcium signaling induces the secretion of pro-inflammatory cytokines such as interleukin-8 as part of the inflammatory response; however, the exact mechanism of calcium signaling induced by bacterial toxins when gingival epithelial cells are exposed to pathogens is unclear. Here, we investigate calcium signaling induced by bacteria and expression of inflammatory cytokines in human gingival epithelial cells. We found that peptidoglycan, a constituent of grampositive bacteria and an agonist of toll-like receptor 2, increases intracellular calcium in a concentration-dependent manner. Peptidoglycan-induced calcium signaling was abolished by treatment with blockers of phospholipase C (U73122), inositol 1,4,5-trisphosphate receptors, indicating the release of calcium from intracellular calcium stores. Peptidoglycan-mediated interleukin-8 expression was blocked by U73122 and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester). Moreover, interleukin-8 expression was induced by thapsigargin, a selective inhibitor of the sarco/endoplasmic reticulum calcium ATPase, when thapsigargin was treated alone or co-treated with peptidoglycan. These results suggest that the gram-positive bacterial toxin peptidoglycan induces calcium signaling via the phospholipase C/inositol 1,4,5-trisphosphate pathway, and that increased interleukin-8 expression is mediated by intracellular calcium levels in human gingival epithelial cells.

Calcium Signaling in Salivary Secretion

  • Kim, Jin Man;Lee, Sang-Woo;Park, Kyungpyo
    • Journal of Korean Dental Science
    • /
    • 제10권2호
    • /
    • pp.45-52
    • /
    • 2017
  • Calcium has versatile roles in diverse physiological functions. Among these functions, intracellular $Ca^{2+}$ plays a key role during the secretion of salivary glands. In this review, we introduce the diverse cellular components involved in the saliva secretion and related dynamic intracellular $Ca^{2+}$ signals. Calcium acts as a critical second messenger for channel activation, protein translocation, and volume regulation, which are essential events for achieving the salivary secretion. In the secretory process, $Ca^{2+}$ activates $K^+$ and $Cl^-$ channels to transport water and electrolyte constituting whole saliva. We also focus on the $Ca^{2+}$ signals from intracellular stores with discussion about detailed molecular mechanism underlying the generation of characteristic $Ca^{2+}$ patterns. In particular, inositol triphosphate signal is a main trigger for inducing $Ca^{2+}$ signals required for the salivary gland functions. The biphasic response of inositol triphosphate receptor and $Ca^{2+}$ pumps generate a self-limiting pattern of $Ca^{2+}$ efflux, resulting in $Ca^{2+}$ oscillations. The regenerative $Ca^{2+}$ oscillations have been detected in salivary gland cells, but the exact mechanism and function of the signals need to be elucidated. In future, we expect that further investigations will be performed toward better understanding of the spatiotemporal role of $Ca^{2+}$ signals in regulating salivary secretion.

Depletion of Inositol Polyphosphate 4-Phosphatase II Suppresses Callosal Axon Formation in the Developing Mice

  • Ji, Liting;Kim, Nam-Ho;Huh, Sung-Oh;Rhee, Hae Jin
    • Molecules and Cells
    • /
    • 제39권6호
    • /
    • pp.501-507
    • /
    • 2016
  • The corpus callosum is a bundle of nerve fibers that connects the two cerebral hemispheres and is essential for coordinated transmission of information between them. Disruption of early stages of callosal development can cause agenesis of the corpus callosum (AgCC), including both complete and partial callosal absence, causing mild to severe cognitive impairment. Despite extensive studies, the etiology of AgCC remains to be clarified due to the complicated mechanism involved in generating AgCC. The biological function of PI3K signaling including phosphatidylinositol-3,4,5-trisphosphate is well established in diverse biochemical processes including axon and dendrite morphogenesis, but the function of the closely related phosphatidylinositol-3,4,-bisphosphate (PI(3,4)P2) signaling, particularly in the nervous system, is largely unknown. Here, we provide the first report on the role of inositol polyphosphate 4-phosphatase II (INPP4B), a PI(3,4)P2 metabolizing 4-phosphatase in the regulation of callosal axon formation. Depleting INPP4B by in utero electroporation suppressed medially directed callosal axon formation. Moreover, depletion of INPP4B significantly attenuated formation of Satb2-positive pyramidal neurons and axon polarization in cortical neurons during cortical development. Taken together, these data suggest that INPP4B plays a role in the regulating callosal axon formation by controlling axon polarization and the Satb2-positive pyramidal neuron population. Dysregulation of INPP4B during cortical development may be implicated in the generation of partial AgCC.

맛의 신호전달 (Taste Transduction)

  • 임호수
    • 한국식품영양과학회지
    • /
    • 제32권4호
    • /
    • pp.645-653
    • /
    • 2003
  • Taste receptor cells respond to gustatory stimuli using a complex arrangement of receptor molecules, signaling cascades and ion channels. When stimulated, these cells produce action potentials that result in the release of neurotransmitter onto an afferent nerve fiber that in turn relays the identity and intensity of the gustatory stimuli to tie brain. A variety of mechanisms are used in transducing the four primary tastes. Direct interaction of the stimuli with ion channels appears to be of particular importance in transducing stimuli reported as salty or sour, whereas tile second messenger systems cyclic AMP and inositol trisphosphate are important in transducing bitter and sweet stimuli. In addition to the four basic tastes, specific mechanisms exist for the amino acid glutamate, which is sometimes termed the fifth primary taste. The emerging picture is that not only do individual taste qualities use more than one mechanism, but multiple pathways are available for individual tastants as well.

Production of Intracellular Calcium Oscillation by Phospholipase C Zeta Activation in Mammalian Eggs

  • Yoon, Sook-Young;Kang, Da-Won
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권3호
    • /
    • pp.197-204
    • /
    • 2011
  • Egg activation is a crucial step that initiates embryo development upon breaking the meiotic arrest. In mammalian, egg activation is accomplished by fusion with sperm, which induces the repeated intracellular $Ca^{2+}$- increases ($[Ca^{2+}]_i$ oscillation). Researches in mammals support the view of the $[Ca^{2+}]_i$ oscillation and egg activation is triggered by a protein factor from sperm that causes $[Ca^{2+}]_i$ release from endoplasmic reticulum, intracellular $[Ca^{2+}]_i$ store, by persistently activation of phosphoinositide pathway. It represents that the sperm factor generates production of inositol trisphosphate ($IP_3$). Recently a sperm specific form of phospholipase C zeta, referred to as PLCZ was identified. In this paper, we confer the evidence that PLCZ represent the sperm factor that induces $[Ca^{2+}]_i$ oscillation and egg activation and discuss the correlation of PLCZ and infertility.

Type II Cell 분리체로부터 Surfactant 인지질의 분비를 매개하는 신호변환 기전 (Signal Transduction Mechanisms Mediating Surfactant Phospholipid Secretion in Isolated Type II Cell)

  • 박성수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제43권2호
    • /
    • pp.123-127
    • /
    • 1996
  • Secretion of surfactant phospholipid can be stimulated by a variety of agonists acting via at least three different signal transduction mechanisms. These include the adenylate cyclase system with activation of cAMP-dependent protein kinase; activation of protein kinase C either directly or subsequent to activation of phosphoinositide-specific phospholipase C and generation of diacylglycerols and inositol trisphosphate; and a third mechanism that involves incresed $Ca^{2+}$ levels and a calmodulin-dependent step. ATP stimulates secretion via all three mechanisms. The protein kinase C pathway is also coupled to phopholipase D which, acting on relatively abundant cellular phospholipids, generates diacylglycerols that further activate protein kinase C. Sustained protein kinase C activation can maintain phosphatidylcholine secretion for a prolonged period of time. It is likely that interactions between the different signaling pathways have an important role in the overall physiological regulation of surfactant secretion.

  • PDF

앱시스산에 의해 기공이 닫히는 신호전달과정에서 G-단백질의 분할

  • 이영숙
    • Journal of Plant Biology
    • /
    • 제37권4호
    • /
    • pp.429-434
    • /
    • 1994
  • 식물 호르몬의 하나인 앱시스산이 식물의 기공을 닫게 하는 과정 중에 phospholipase C가 활성화되어 inositol 1,4,5-trisphosphate(P3)의 양이 증가함이 보고되었다 (Cot and Crain. 1994). 그러나 아직까지 공변세포에서 phospholipase C의 활성을 조절하는 G-단백질에 대한 보고는 없었다. 그러므로 앱시스산에 의한 기공닫힘과정에 G-단백질이 수반되는지를 조사하고자, G-단백질 활성의 저해제인 pertussis toxin과 촉진제인 cholera toxin을 처리하여 보았다. 닭의장풀(Commelina communis L.)의 잎 뒷면으로부터 얻은 온전한 표피층과 잠두(Vicia faba L)의 잎을 부분 분해하여 공변세포만을 남긴 표피층에 pertussis toxin을 처리하였을 때, 앱시스산에 의한 기공닫힘이 부분적으로 억제됨을 관찰하였다. 그러나 cholera toxin의 경우는 아무런 영향이 없었다. 공변세포만을 지닌 표피층에 pertussis toxin을 전처리한 후 앱시스산을 가했을 때, 앱시스산에 의한 IP3 양의 증가 양상이 억제됨을 확인하였다. 이러한 결과들로부터 앱시스산에 의한 기공닫힘과정에는 pertussis toxin-sensitive, phospholipase C-linked G-protein이 관여하고 있음을 알 수 있었다.

  • PDF

Inositol 1,4,5-Trisphosphate-induced Increase in $Ca^{2+}-ATPase$ Activity in the Microsomes of Tracheal Epithelial Cells

  • Cho, Hyoung-Jin;Park, Sung-Shin;Kim, Young-Kee
    • The Korean Journal of Physiology
    • /
    • 제29권2호
    • /
    • pp.269-277
    • /
    • 1995
  • Membrane vesicles were prepared by differential centrifugation from epithelial cells of porcine trachea. Total activity of microsomal ATPases was measured spectrophotometrically by a coupled enzyme assay. The steady-state activity of the enzyme was $329{\pm}10$ nmol/min mg protein. Thapsigargin, a specific antagonist of intracellular $Ca^{2+}-ATPase$, inhibited about 50% of the activity, leaving $178{\pm}18\;nmol/min .mg$ protein (n=6), indicating that the $Ca^{2+}-ATPase$ is one of the major microsomal ATPases. The microsomes used in this study appeared to be tight-sealed vesicles since they showed saturation in $^{45}Ca^{2+}$ uptake experiments. Inositol 1,4,5-trisphosphate $InsP_{3}, 4\;{\mu}M$, an agonist of $InsP_{3}$-sensitive $Ca^{2+}$ release channel ($InsP_{3}$, receptor), and Ca-ionophore A23187 $(10\;{\mu}M)$ induced $^{45}Ca^{2+}$ releases of 20% and 50% of stored $^{45}Ca^{2+}$, respectively. The addition of $(10\;{\mu}M\;InsP_{3}$ also increased the microsomal ATPase activity from $282{\pm}8$ nmol/min mg protein to $334{\pm}21$ nmol/min . mg protein in the intact vesicles. Similar increase in the activity was observed by making microsomes leaky (uncoupling) using the Ca-ionophore A23187. ;$InsP_{3}-induced$ effects were blocked by either thapsigargin or heparin suggesting that: 1) the $InsP_{3}-induced$ increase in ATPase activity is mediated by microsomal $Ca^{2+}-ATPase$, and 2) dissipation of $Ca^{2+}$ gradient across the microsomal membrane is responsible for the $InsP_{3}-induced$ effect. In order to test the dependence of the $Ca^{2+}-ATPase$ activity on the activity of $InsP_{3}-induced$ the activity of ATPases was monitored in various concentrations of free $Ca^{2+}$ using $EGTA-Ca^{2+}$ buffers. The $Ca^{2+}$-dependent biphasic change is the well-known character of $InsP_{3} receptor but not of microsomal $Ca^{2+}-ATPase$ in non-excitable cells; however, the activity of microsomal ATPase appeared biphasic and a maxim진 activity of $397{\pm}36nmol/min\;.mg$ protein was obtained in the solution containing 100 nM free $Ca^{2+}$. Below or above this concentration, the activity of ATPases was lower. These results strongly support a positive correlation of microsomal $Ca^{2+}-ATPase$ to the $InsP_{3}$ receptors in epithelial microsomes.

  • PDF

Cordycepin-Enriched WIB801C from Cordyceps militaris Inhibits Collagen-Induced [Ca2+]i Mobilization via cAMP-Dependent Phosphorylation of Inositol 1, 4, 5-Trisphosphate Receptor in Human Platelets

  • Lee, Dong-Ha;Kim, Hyun-Hong;Cho, Hyun-Jeong;Yu, Young-Bin;Kang, Hyo-Chan;Kim, Jong-Lae;Lee, Jong-Jin;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.223-231
    • /
    • 2014
  • In this study, we prepared cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha, and investigated the effect of CE-WIB801C on collagen-induced human platelet aggregation. CE-WIB801C dose-dependently inhibited collagen-induced platelet aggregation, and its $IC_{50}$ value was $175{\mu}g/ml$. CE-WIB801C increased cAMP level more than cGMP level, but inhibited collagen-elevated $[CA^{2+}]_i$ mobilization and thromboxane $A_2$ ($TXA_2$) production. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased the CE-WIB801C-downregulated $[CA^{2+}]_i$ level in a dose dependent manner, and strongly inhibited CE-WIB801C-induced inositol 1, 4, 5-trisphosphate receptor ($IP_3R$) phosphorylation. These results suggest that the inhibition of $[CA^{2+}]_i$ mobilization by CE-WIB801C is resulted from the cAMP/A-kinase-dependent phosphorylation of $IP_3R$. CE-WIB801C suppressed $TXA_2$ production, but did not inhibit the activities of cyclooxygenase-1 (COX-1) and $TXA_2$ synthase (TXAS). These results suggest that the inhibition of $TXA_2$ production by WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. In this study, we demonstrate that CE-WIB801C with cAMP-dependent $CA^{2+}$-antagonistic antiplatelet effects may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

Genomic Regions associated with Necrotic Enteritis Resistance in Fayoumi and White Leghorn Chickens

  • Kim, Eui-Soo;Lillehoj, Hyun S.;Sohn, Sea Hwan;Hong, Yeong Ho
    • 한국가금학회지
    • /
    • 제42권1호
    • /
    • pp.27-32
    • /
    • 2015
  • In this study, we used two breeds of chicken to identify genomic regions corresponding to necrotic enteritis (NE) resistance. We scanned the genomes of a resistant and susceptible line of Fayoumi and White Leghorn chickens (20 birds/line) using a chicken 60 K Illumina SNP panel. A total of 235 loci with divergently fixed alleles were identified across the genome in both breeds; particularly, several clusters of multiple loci with fixed alleles were found in five narrow regions. Moreover, consensus 15-SNP haplotypes that were shared by the resistant lines of both breeds were identified on chromosomes 3, 7 and 9. Genes responsible for NE resistance were identified in chicken lines selected for resistance and susceptibility. Annotation of the regions spanning clustered divergently fixed regions revealed a set of interesting candidate genes such as phosphoinositide-3-kinase, regulatory subunit 5, p101 (PIK3R5) and inositol 1,4,5-trisphosphate receptor 1 (ITPR1), which participate in immune response. Consensus haplotypes were found in regions containing possibly relevant genes, such as myostatin and myosin, which play important roles in muscle development. Thus, genome scans of divergent selection in multiple chicken lines and breeds can be used to identify genomic regions associated with NE resistance.