• Title/Summary/Keyword: Inorganic-organic hybrid film.

Search Result 93, Processing Time 0.024 seconds

Preparation and Characterization of Sol-Gel Derived $SiO_2-TiO_2$ -PDMS Composite Films

  • Hwang, Jin Myeong;Yeo, Chang Seon;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1366-1370
    • /
    • 2001
  • Thin films of the SiO2-TiO2-PDMS composite material have been prepared by the sol-gel dip coating method. Acid catalyzed solutions of tetraethoxy silane (TEOS) and polydimethyl siloxane (PDMS) mixed with titanium isopropoxide Ti(OiPr) were used as precursors. The optical and structural properties of the organically modified 70SiO2-30TiO2 composite films have been investigated with Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Spectroscopy (UV-Vis), Differential Thermal Analysis (DTA) and prism coupling technique. The films coated on the soda-lime-silicate glass exhibit 450-750 nm thickness, 1.56-1.68 refractive index and 88-94% transmittance depending on the experimental parameters such as amount of PDMS, thermal treatment and heating rate. The optical loss of prepared composite film was measured to be about 0.34 dB/cm.

A study on the structure of Si-O-C thin films with films size pore by ICPCVD (ICPCVD방법에 의한 나노기공을 갖는 Si-O-C 박막의 형성에 관한 연구)

  • Oh, Teresa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.477-480
    • /
    • 2002
  • Si-O-C(-H) thin film with a tow dielectric constant were deposited on a P-type Si(100) substrate by an inductively coupled plasma chemical vapor deposition (ICPCVD). Bis-trimethylsilymethane (BTMSM, H$_{9}$C$_3$-Si-CH$_2$-Si-C$_3$H$_{9}$) and oxygen gas were used as Precursor. Hybrid type Si-O-C(-H) thin films with organic material have been generated many voids after annealing. Consequently, the Si-O-C(-H) films can be made a low dielectric material by the effect of void. The surface characterization of Si-O-C(-H) thin films were performed by SEM(scanning electron microscope). The characteristic analysis of Si-O-C(-H) thin films were performed by X-ray photoelectron spectroscopy (XPS).

  • PDF

The Effect of Passivation Film with Inorganic/Epoxy Layers on Life Time Characteristics of OLED Device (OLED 내구성에 미치는 무기/에폭시층 보호막의 영향)

  • Lim, Jung-A;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.287-293
    • /
    • 2009
  • The passivation films with epoxy layer on LiF, $SiN_x$ and LiF/$SiN_x$ inorganic layer were fabricated on OLED to protect device from the direct damage of $O_2$ and $H_2O$ and to apply for a buffer layer between OLED device and passivation multi-layer with organic/inorganic hybrid structure as to diminish the thermal stress and expansion. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The device structure was multi-layer of ITO(150 nm) / ELM200_HIL(50 nm) / ELM002_HTL(30 nm) / $Alq_3$: 1 vol.% Rubrene(30 nm) / $Alq_3$(30 nm) / LiF(0.7 nm) / Al(100 nm). LiF/epoxy applied as a protective layer didn't contribute to the improvement of life time. While in case of $SiN_x$/epoxy, damage was done in the passivation process because of difference in heat expansion between films which could occur during the formation of epoxy film. Using LiF/$SiN_x$/epoxy improved lifetime significantly without suffering damage in the process of forming films, therefore, the best structure of passivation film with inorganic/epoxy layers was LiF/$SiN_x$/E1.

Characterization of Silica/EVOH Hybrid Coating Materials Prepared by Sol-Gel Method

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-296
    • /
    • 2009
  • In this study, the silica-based hybrid material with high barrier property was prepared by incorporating ethylene-vinyl alcohol (EVOH) copolymer, which has been utilized as packaging materials due to its superior gas permeation resistance, during sol-gel process. In preparation of this EVOH/$SiO_2$ hybrid coating materials, the (3-glycidoxy-propyl)-trimethoxysilane (GPTMS) as a silane coupling agent was employed to promote interfacial adhesion between organic and inorganic phases. As confirmed from FT-IR analysis, the physical interaction between two phases was improved due to the increased hydrogen bonding, resulting in homogeneous microstructure with dispersion of nano-sized silica particles. However, depending on the range of content of added silane coupling agent (GPTMS), micro-phase separated microstructure in the hybrid could be observed due to insufficient interfacial attraction or possibility of polymerization reaction of epoxide ring in GPTMS. The oxygen barrier property of the mono-layer coated BOPP (biaxially oriented polypropylene) film was examined for the hybrids containing various GPTMS contents. Consequently, it is revealed that GPTMS should be used in an optimum level of content to produce the high barrier EVOH/$SiO_2$ hybrid material with an improved optical transparency and homogeneous phase morphology.

Correlation between the dielectric constant and porosity due to the nano pore in the thin film (나노기공에 의한 박막 내의 기공율과 절연상수의 상관관계)

  • Oh, Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.1-5
    • /
    • 2007
  • SiOC films were made using the oxygen and bistrimethylsilylmethane mixed precursor. The chemical properties of SiOC films divided into three properties, organic, hybrid and inorganic depending on the flow rate ratio between oxygen and bistrimethylsilylmethane precursor. The films with organic properties decreased dielectric constant, because of pore incorporation in final materials. In this study, the porosity of SiOC films with organic properties was investigated using the Makwell-Garnett equation. The porosity of the films could be correlated with the blue shift in the infrared spectra scopy, and increased with the decreasing the dielectric constant of the film.

The Effect of Multilayer Passivation Film on Life Time Characteristics of OLED Device (OLED소자의 수명에 미치는 다층 보호막의 영향)

  • Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.20-24
    • /
    • 2012
  • Multilayer passivation film on OLED with organic/inorganic hybrid structure as to diminish the thermal stress and expansion was researched to protect device from the direct damage of $O_2$ and $H_2O$ and improve life time characteristics. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The films consist of ITO(150 nm)/ELM200_HIL(50 nm)/ELM002_HTL(30 nm)/$Alq_3$: 1 vol.% Rubrene(30 nm)/$Alq_3$(30 nm) and LiF(0.7 nm)/Al(100 nm) which were formed in that order. Using LiF/$SiN_x$ as a buffer layer was determined because it significantly improved life time characteristics without suffering damage in the process of forming passivation film. Multilayer passivation film on buffer layer didn't produce much change in current efficiency, while the half life time at 1,000 $cd/m^2$ of OLED/LiF/$SiN_x$/E1/$SiN_x$ was 710 hours which showed about 1.5 times longer than OLED/LiF/$SiN_x$/E1 with 498 hours. futhermore, OLED/LiF/$SiN_x$/E1/$SiN_x$/E1/$SiN_x$ with 1301 hours showed about twice than OLED/LiF/$SiN_x$/E1/$SiN_x$ which demonstrated that superior characteristics of life time was obtained in multilayer passivation film. Through the above result, it was suggested using LiF/$SiN_x$ as a buffer layer could reduce the damage from the difference of thermal expansion coefficient in OLED with protective films, and epoxy layer in multilayer passivation film could function like a buffer between $SiN_x$ inorganic layers with relatively large thermal stress.

Solvent effects on ZnO based organic inorganic hybrid solar cell.

  • Kim, Yeong-Tae;Park, Mi-Yeong;Park, Seon-Yeong;Lee, Gyu-Hwan;Kim, Yang-Do;Jeong, Yong-Su;Im, Dong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.152-152
    • /
    • 2009
  • 유기태양전지 Solvent인 1-2-Dichlorobenzene(DCB)에 1-Bromonaphtalene(BN)을 첨가하여 Air분위기에서 ZnO film을 이용한 유/무기 복합 태양전지를 만들었다. 셀의 구조는 ITO/ZnO nanofilm/Poly(3-hexylthiophene(P3HT):[6,6]-Phenyl C60-Butyric acid methyl ester(PCBM)/PEDOT:PSS/Ag로 제작했다. 두께 70nm ZnO film은 전기화학적 방법으로 ITO위에 전착하였다. AM1.5조건에서 Solar simulator로 측정한 결과 BN을 첨가한 셀에서 Jsc값이 증가되었다. Jsc값의 증가는 BN이 결정화를 향상시켜 효율이 증가됨을 확인하였다.

  • PDF

Study on the Hybrid Passivation layer of OLEDs using the Organic/Inorganic Thin Film (유/무기 복합 박막을 이용한 유기발광 소자의 보호층에 관한 연구)

  • Bae, Sung-Jin;Lee, Joo-Won;Lee, Young-Hoon;Kang, Nam-Soo;Kim, Dong-Young;Hwang, Sung-Woo;Kim, Jai-Kyung;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.78-80
    • /
    • 2006
  • The hybrid thin-film (HTF) passivation layer composed of the Ultra Violet (UV) curable acrylate layer and MS-31 (MgO:$SiO_2$=3:1wt%) layer was adopted in organic light emitting device (OLEO) to protect organic light emitting materials from penetrations of oxygen and water vapors. The results showed that the HTF layer possessed a very low WVTR value of lower than $0.007gm/m^{2+}day$ at $37.8^{\circ}C$ and 100% RH. This value was within the limited range of the sensitivity of WVTR measurements. And the lifetime of the HTF passivated device became almost three times longer than that of the bare device. The HTF on the OLEO was found to be very effective in protect what from the penetrations of oxygen and moisture.

  • PDF

Study on the Electrical Characteristic of Low-k SiOC films due to the Appropriate Annealing Temperature (저 유전체 SiOC 박막의 열처리 공정 온도에 따른 전기적인 특성에 관한 연구)

  • Oh, Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.1-4
    • /
    • 2011
  • This study was the coorrelation between the electrical properties and the dielectric constant of organic inorganic hybrid type low k SiOC film. SiOC film as low-k films was deposited by the chemical vapor deposition and then annealed at 30 $0{\sim}500^{\circ}C$ to find out the properties of the depending on the temperature and polarity. SiOC film decreased the dielectric constant after annealing process, and the electrical properties were improved at the sample annealed at $400^{\circ}C$. From the XRD patterns, there were two kinds of bonding structures in SiOC film. There was the difference in the bonding structure between the samples annealed under $300^{\circ}C$ and the samples annealed over $400^{\circ}C$. The change was confirmed near $400^{\circ}C$.

The electrical characteristics of flexible organic field effect transistors with flexible multi-stacked hybrid encapsulation

  • Seol, Yeong-Guk;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung;Lee, Deok-Gyu;Kim, Yun-Je;An, Cheol-Hyeon;Jo, Hyeong-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.176-176
    • /
    • 2010
  • One of the critical issues for applications of flexible organic thin film transistors (OTFTs) for flexible electronic systems is the electrical stabilities of the OTFT devices, including variation of the current on/off ratio (Ion/Ioff), leakage current, threshold voltage, and hysteresis under repetitive mechanical deformation. In particular, repetitive mechanical deformation accelerates the degradation of device performance at the ambient environment. In this work, electrical stability of the pentacene organic thin film transistors (OTFTs) employing multi-stack hybrid encapsulation layers was investigated under mechanical cyclic bending. Flexible bottom-gated pentacene-based OTFTs fabricated on flexible polyimide substrate with poly-4-vinyl phenol (PVP) dielectric as a gate dielectric were encapsulated by the plasma-deposited organic layer and atomic-layer-deposited inorganic layer. For cyclic bending experiment of flexible OTFTs, the devices were cyclically bent up to 105 times with 5mm bending radius. In the most of the devices after 105 times of bending cycles, the off-current of the OTFT with no encapsulation layers was quickly increased due to increases in the conductivity of the pentacene caused by doping effects from $O_2$ and $H_2O$ in the atmosphere, which leads to decrease in the Ion/Ioff and increase in the hysteresis. With encapsulation layers, however, the electrical stabilities of the OTFTs were improved significantly. In particular, the OTFTs with multi-stack hybrid encapsulation layer showed the best electrical stabilities up to the bending cycles of $10^5$ times compared to the devices with single organic encapsulation layer. Changes in electrical properties of cyclically bent OTFTs with encapsulation layers will be discussed in detail.

  • PDF