• Title/Summary/Keyword: Inorganic carbon source

Search Result 126, Processing Time 0.027 seconds

Effects of Culturing Parameters on the Production of Microbial Biosurfactant from Candida bombiocola (Candida bombiocola로 부터 미생물 계면활성제 생산시 관여 인자에 관한 연구)

  • 김원경;김은기
    • KSBB Journal
    • /
    • v.7 no.2
    • /
    • pp.102-106
    • /
    • 1992
  • Effects of nitrogen souses and C/N ratio were investigated on the production of extracellular microbial surfaclant, sophorolipid, from C. bombiocola. Organic nitrogen sources, such as urea, peptone and yeast extract was found to be more effective for sophorolipid production, than inorganic nitrogen sources. Depending on the nitrogen sources, sophorolipid production pattern varied by increasing C/N ratio. Increased production of sophrolipid could be obtained up to 90g/L by feeding carbon source again 2 days after cultivation.

  • PDF

Optimal Conditions for the Production of Sphimin, a Sphingomyelinase Inhibitor from Steptomyces sp. F50970

  • Sipkyu Lim;Park, Wan
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.5-8
    • /
    • 1999
  • We isolated a sphingonyelinase (SMase) inhibitor, which would be a potential reagent to regulate cell proliferation, oncogenesis, and inflammation, from a strain of Streptomyces sp.. In this paper, we report the optimal conditions for the production of SMase inhibitor, designed as sphinin, from Streptomyces sp. F50970. The optimal carbon and nitrogen source were 1% soluble starch and 0.05%-0.15% trypton. Most of monosaccharides and high concentration of soluble starch above 1.0% caused falling of pH and sphinin production. Zn2+, Cu2+, Fe2+, Mn2+, and Co2+inhibited cell growth and the production of sphinin. Inorganic phosphate promoted the sphinin production. Optimal initial pH for the production of sphinin was 7.5-8.0. Addition of CaCO3 to the medium resulted in an increase of inhibitor production. Based on these results, we designed a fermentation medium for the production of a SMase inhibitor, sphinin, from Streptomyces sp. F50970.

Electro-Optical Performances of In plane Switching(IPS) Cell on the Inorganic Thin Film by DuoPIGatron Ion Source (NDLC박막에 DuoPIGatron 이온소스를 사용한 IPS cell의 전기광학특성)

  • Kim, Sang-Hoon;Kim, Jong-Hwan;Kang, Dong-Hoon;Kim, Young-Hwan;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.453-454
    • /
    • 2006
  • We studied the nematic liquid crystal (NLC) alignment capability by the IB(Ion bean) alignment method on a NDLC(Nitrogen Diamond Like Carbon) as a-C:H thin film. and investigated electro-optical performances of the IBaligned IPS(In plane switching)cell with NDLC surface. A good LC alignment by IB exposure on a NDLC surface was achieved. Monodomain alignment of the IB aligned IPS cell can be observed. The goodelectro-optical (EO) characteristics of the IB aligned IPS cell was observed with oblique IBexposure on the NDLC as a-C:H thin film for 1 min.

  • PDF

Production of Gluconic Acid by Some Local Fungi

  • Shindia, A.A.;El-Sherbeny, G.A.;El-Esawy, A.E.;Sheriff, Y.M.M.M.
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.22-29
    • /
    • 2006
  • Forty-one fungal species belonging to 15 fungal genera isolated from Egyptian soil and sugar cane waste samples were tested for their capacity of producing acidity and gluconic acid. For the tests, the fungi were grown on glucose substrate and culture filtrates were examined using paper chromatography analysis. Most of the tested fungi have a relative wide potentiality for total acid production in their filtrates. Nearly 51% of them showed their ability of producing gluconic acid. Aspergillus niger was distinguishable from other species by its capacity to produce substantial amounts of gluconic acid when it was cultivated on a selective medium. The optimized cultural conditions for gluconic acid yields were using submerged culture at $30^{\circ}C$ at initial pH 6.0 for 7 days of incubation. Among the various concentrations of substrate used, glucose (14%, w/v) was found to be the most suitable carbon source for maximal gluconic acid during fermentation. Maximum values of fungal biomass (10.02 g/l) and gluconic acid (58.46 g/l) were obtained when the fungus was grown with 1% peptone as sole nitrogen source. Influence of the concentration of some inorganic salts as well as the rate of aeration on the gluconic acid and biomass production is also described.

The Optimal Producing Conditions of Bacteriocin Produced by Lactobacillus sp. FF-3 Isolated from Korean Dongchimi (동치미에서 분리한 Lactobacillus sp. FF-3가 생산하는 bacteriocin의 최적 생산조건)

  • 박진철;차재영;권오창;조영수
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.554-559
    • /
    • 2003
  • The optimal culture conditions on bacteriocin producing of Lactobacillus sp. FF-3 isolated from Korean Dongchimi, were studied for enhancing its production with regard to environmental and nutritional factors. The optimal cultivation time, initial pH and temperature were 21 hours, pH 7.0 and 30∼37$^{\circ}C$ respectively. Optimal compositions of culture medium for bacteriocin production were glucose 3% as carbon source, tryptone 4% as nitrogen source, and manganese sulfate 0.005% as inorganic salt with other basal components. The maximum antimicrobial activity was 484 BU/mL under the optimal culture condition.

Studies on Cellulase -Part. 2. The Physiological and Morphological Properties of the Cellulase producing Strains Ku-3371 and Ku-4383- (Cellulase에 관(關)한 연구(硏究) -제 2 보(第 2 報) Cellulase 생성균(生成菌) Ku-3371, Ko-4383 균주(菌株)의 균학적(菌學的) 성질(性質)-)

  • Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.119-122
    • /
    • 1969
  • In the previous paper, two strains of cellulase producing microorganism were isolated from night soil samples using shaking culture. This report deals with the physiological and morphological tests carried out according to the methods of Toyama and Chung. 1. Two strains, Ku-3371 and Ku-4383 which should the best growth in Czapek.s liquid medium, were identified as Trichoderma viride. 2. These strains grew the best at about $30^{\circ}C$ and the optimum pH values of growth in Czapek's liquid medium was 4.0. 3. These mould strains utilized monosaccharide as its carbon source and can utilized sodium glutamate, peptone and nitrate form nitrogen but other inorganic nitrogen compoumd are unable to use as its nitrogen source.

  • PDF

Isolation and identification of $\beta$-glucan degrading enzyme producing bacterium using coloured $\beta$-glucan (색소에 접합된 $\beta$-glucan을 이용한 $\beta$-glucan 분해효소 생산 균주의 분리 및 동정)

  • 양진오;정안식;이성택
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.339-345
    • /
    • 1987
  • A bacterium K-4-3, producing $\beta$-glucan hydrolyzing enzyme, was isolated from soil and identified to be Bacillus subtilis by its morpholohical and physiological characteristics. $\beta$-glucan was coloured using cibacron blue 3G-A and cross linded by the addition of 1, 4-butanedioldiglycidyl ether. This substrate was used for the isolation of $\beta$-glucanase producing microorganism. The $\beta$-glucan hydrolyzing enzyme actibity from isolated K-4-3 strain was also measured using the modified substrate. Bacillus subtilis K-4-3 produced the highest extracellular $\beta$-glucan hydrolyzing activity in the basal medium containing $\beta$-glucan as a carbon source, peptone and tryptone as a nitrogen source, and magnesium sulfate as an inorganic salt. The optimum temperature and initial pH for $\beta$-glucanase production by Bacillus subtilis K-4-3 were $37^{\circ}C$ and pH6. The highest enzyme activity was obtained at the culture age of 54 hrs with rotary shaking at $37^{\circ}C$. The crude enzyme showed the highest activity at pH 7.5-8.0 and $65^{\circ}C$.

  • PDF

Influence of Carbon and Nitrogen Sources in Solubilization of Hardly Soluble Mineral Phosphates by Penicillium Oxalicum CBPS-Tsa

  • Kim, Eun-Hee;Sundaram, Seshadri;Park, Myoung-Su;Shin, Wan-Sik;Sa, Tong-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.197-202
    • /
    • 2003
  • Phosphorus is one of the major plant growth limiting nutrients, despite being abundant in soils in both inorganic and organic forms. Phosphobioinoculants in the form of microorganisms can help in increasing the availability of accumulated phosphates for plant growth by solubilization. Penicillium oxalicum CBPSTsa, isolated from paddy rhizosphere, was studied for its phosphate solubilization. The influence of various carbon sources like glucose, sucrose, mannitol and sorbitol and nitrogen sources like arginine, sodium nitrate, potassium nitrate, ammonium chloride and ammonium sulphate were evaluated using liquid media with tricalcium phosphate (Ca-P), ferric phosphate (Fe-P) and aluminium phosphate (Al-P). Maximum soluble phosphate of 824 mg/L was found in the amendment of sucrose-sodium nitrate from 5 g/L of Ca-P. Mannitol, sorbitol, and ariginine were poor in phosphate solubilization. While sucrose was better carbon source in solubilization of Ca-P and Al-P, glucose fared better in solubilization of Fe-P. Though all the nitrogen sources enhanced P solubilization, nitrates were better than ammonium In the amendments of ammonium chloride and ammonium sulphate, higher uptake of available phosphates by the fungus was found, and this resulted in depletion of available P in Fe-P amendment Phosphate solubilization was accompanied by acidification of the media, and the highest pH decrease was observed in glucose amendment Among the nitrogen sources, ammonium chloride favored greater pH decrease.

Solubilization of Inorganic Phosphates and Plant Growth Promotion by Pantoea Strains

  • Walpola, Buddhi Charana;Kong, Won-Sik;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.494-501
    • /
    • 2013
  • Two phosphate solubilizing Pantoea strains (P. agglomerans and P. rodasii) were employed in elucidating their phosphate solubilizing potential under different carbon and nitrogen sources, pH, temperature and salt conditions. Plant growth promoting characteristics such as ACC deaminase activity, indole acetic acid (IAA), HCN, ammonia, and siderophore production of the two strains were assessed in vitro. Potential applicability of the strains as bio-inoculants was also evaluated in pot experiments conducted under green house conditions. Phosphate solubilization measured as the amount of phosphorous released into the medium was recorded as 810 and $788{\mu}g\;ml^{-1}$ respectively by P. agglomerans and P. rodasii. Glucose at the rate of 2% was found be the best carbon source, while $(NH_4)_2SO_4$ was the best nitrogen source for both strains. Despite a slight decrease in phosphate solubilization observed at higher temperature, pH and salt concentrations, both strains could withstand against a range of temperature ($30-35^{\circ}C$), pH (7-9) and the presence of NaCl (up to 5%) without much compromising the phosphate solubilization. Different plant growth promoting traits (ACC deaminase activity, IAA, HCN, ammonia, and siderophore production) of the strains and their ability to promote the growth of green gram seedlings indicate that both strains possess high potential to be used as bio-inoculants.

The Surface fCO2 Distribution of the Western North Pacific in Summer 2002 (2002년 여름 북서태평양 표층 해수의 이산화탄소 분포 특성)

  • Choi, Sang-Hwa;Kim, Dong-Seon;Shim, Jeong-Hee;Min, Hong-Sik
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2006
  • We measured the fugacity of $CO_2$ $(fCO_2)$, temperature, salinity, nutrients and chlorophyll a in the surface water of the western North Pacific $(4^{\circ}30'{\sim}33^{\circ}10'N,\;144^{\circ}20'{\sim}127^{\circ}35'E)$ in September 2002. There were zonally several major currents which have characteristics of specific temperature and salinity (NECC, North Equatorial Counter Current; NEC, North Equatorial Current; Kuroshio etc.). Surface $fCO_2$ distribution was clearly distinguished into two groups, tropical and subtropical areas of which boundary was $20^{\circ}N$. In the tropical Int surface $fCO_2$ was mainly controlled by temperature, while in the subtropical area, surface $fCO_2$ was dependent on total inorganic carbon contents. Air-sea $CO_2$ flux showed a large spatial variation, with a range of $-0.69{\sim}0.79 mmole\;m^{-2}day^{-1}$. In the area of AE (Anticyclonic Eddy), SM(Southern Mixed region) and NM (Northern Mixed region), the ocean acted as a weak source of $CO_2$ $(0.6{\sim}0.79 mmole\; m^{-2}day^{-1})$. In NECC, NEC, Kuroshio and ECS (East China Sea), however, the fluxes were estimated to be $-0.3mmole\; m^{-2}day^{-1})$ for the first three regions and $-1.2mmole\; m^{-2}day^{-1})$ for ECS respectively, indicating that these areas acted as sinks of $CO_2$. The average air-sea flux in the entire study area was $0.15mmole\;m^{-2}day^{-1})$, implying that the western North Pacific was a weak source of $CO_2$ during the study period.