• Title/Summary/Keyword: Inoculated seedlings

Search Result 207, Processing Time 0.018 seconds

Effect of Amounts of Pisolithus tinctorius Spores and Fertilizer on the Growth of Potted Pinus densiflora Seedlings (모래밭 버섯 포자접종량(胞子接種量)과 시비량(施肥量)에 따른 소나무 화분파종묘(花盆播種苗)의 생장촉진효과(生長促進効果))

  • Koo, Chang Duck;Lee, Won Kyu;Lee, Chun Yong;Park, Seung Kull
    • Journal of Korean Society of Forest Science
    • /
    • v.72 no.1
    • /
    • pp.32-36
    • /
    • 1986
  • The effect of different inoculation amounts of Pisolithus tinctorius (Pt) spores and fertilizers on the growth of Pinus densiflora seedlings grown in fumigated or nonfumigated soils were tested in the: polyethylene pots. To infest the pot soil with Pt spores, the mixture of the spores with sterilized nursery soil was used after seeding. Eighteen months after inoculation, mycorrhizal formation was 42-70% in fumigated plus Korean-Pt inoculated pots, 60-70% in fumigated plus U.S.-Pt inoculated pots, and less than 1% in non-fumigated, Korean-Pt inoculated pots. Growth enhancement effect of Pt spore inoculation was shown on only fumigated soil and the inoculation increased the seedlings height (8-38%), stem diameter (9-40%) and dry weight (6-73%). Especially 0.4g per pot application rate increased the height (30-31%), stem diameter (23-28%) and dry weight (56-69%), while the 0.2g U.S. Pt spore per pot rate increased 26-38, 17-20 and 58-60%, for height, stem diameter, and dry weight respectively. At 1X fertilizer application rate (urea 2g, fused superphoshate 4g, and potassium chloride 1g per pot), the 0.4g per pot rate resulted in more dry weight by 18% than that at 1/2X rate. The result indicated that there is a need for further research on inoculating nonfumigated soil with Pt and that appropriate application rates of fertilizers and Pt spores are 1X and 0.2-0.4g per pot on fumigated soil, respectively.

  • PDF

Convenient Screening Method of Chinese Cabbage for Resistance to Plasmodiophora brassicae Using Soil-Drenching Inoculation (관주 접종법을 이용한 효율적인 배추 뿌리혹병 저항성 검정법)

  • Jo, Su-Jung;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol;Choi, Gyung-Ja
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.279-284
    • /
    • 2010
  • Clubroot caused by Plasmodiophora brassicae is a widespread disease that causes serious problems in many brassica growing areas. To establish more simple and reliable clubroot screening method of Chinese cabbage to P. brassicae using soil-drenching inoculation, the development of clubroot on Chinese cabbage according to several conditions such as soil type, inoculum concentration of P. brassicae GN-1 (race 9), plant growth stage and incubation period was studied. In a commercial horticulture nursery media soil (CNS), disease severity of the seedling according to inoculum concentration increased in a dose-dependent manner, but did not in mixture of CNS and upland soil (1:1, v/v). To facilitate and acquire precise result of resistance screening of Chinese cabbage to clubroot, 10-day-old seedlings should be inoculated by drenching the spore suspension of P. brassicae to give inoculum density of $4.0{\times}10^8$ spores/pot. To develop the disease, the inoculated seedlings were incubated in a growth chamber at $20^{\circ}C$ for 3 days, and then cultivated in a greenhouse ($25{\pm}5^{\circ}C$) for five weeks. Under the optimum conditions, 25 clubroot-resistant (CR) and 3 clubroot-susceptible (CS) cultivars were tested for resistance to P. brassicae. All CR cultivars showed very clear resistance response, on the other hand all CS cultivars severly infected with the pathogen. The results suggest that this method is efficient screening method of Chinese cabbage for resistance to clubroot disease.

Development of Efficient Screening Method for Resistance of Cabbage Cultivars to Black Rot Disease Caused by Xanthomonas campestris pv. campestris (양배추 검은썩음병에 대한 효율적인 저항성 검정법)

  • Lee, Ji Hyun;Kim, Jin-Cheol;Jang, Kyoung Soo;Choi, Yong Ho;Ahn, Kyoung Gu;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is one of the most serious diseases of crucifers world-wide. To establish the efficient screening method for resistant cabbage to Xcc, different inoculation methods, inoculation positions, growth stages of seedlings, and incubation temperatures after inoculation were investigated with the seven cabbage cultivars showing different resistance degrees to the pathogen. Clipping with mouse-tooth forceps was better inoculation method than piercing with 18 pins or cutting with scissors to distinguish the level of resistance and susceptibility. In inoculation using mouth-tooth forceps, clipping the edges of the leaves near veins is more effective than injuring the veins of the leaves directly. In addition, the inoculated plants kept at $22^{\circ}C$ showed more clear resistant and susceptible responses than those kept at 26 or $30^{\circ}C$. On the basis of the results, we suggest that an efficient screening method for resistance of cabbage cultivars to black rot is to clip the edges of the leaves near veins of the four-week-old seedlings with mouth-tooth forceps dipped in a suspension of Xcc at a concentration of $7{\times}10^7$ cfu/ml and incubate the inoculated plants in a growth room at $22^{\circ}C$ with 12-hr light a day.

Development of Efficient Screening Method for Resistant Cabbage and Broccoli to Plasmodiophora brassicae (양배추 및 브로콜리 뿌리혹병에 대한 효율적인 저항성 검정 방법 확립)

  • Jo, Su-Jung;Shim, Sun-Ah;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol;Choi, Gyung-Ja
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.86-92
    • /
    • 2012
  • Clubroot caused by Plasmodiophora brassicae Woron. is one of the most important diseases in Brassica crops worldwide. To establish more simple and reliable screening method for resistant cabbage and broccoli to P. brassicae, the development of clubroot on the plants according to inoculum concentration and incubation period after inoculating with the pathogen was investigated using P. brassicae GN1 isolate (race 9). To facilitate and acquire precise result of resistance screening of cabbage and broccoli to clubroot, 14-day-old seedlings were inoculated by drenching roots with the spore suspension of P. brassicae to give inoculum density of $2.5{\times}10^9$ spores/pot. To develop the disease, the inoculated seedlings were incubated in a growth chamber at $20^{\circ}C$ for 3 days, and then cultivated in a greenhouse ($20{\pm}5^{\circ}C$) for five weeks. Under the optimum conditions, 16 cabbage and 17 broccoli cultivars were tested for resistance to four field isolates (GN1, GN2, GS and YC) of P. brassicae collected from four regions in Korea. Among them, some cabbage and broccoli cultivars showed different resistance response to three isolates (GN1, GN2 and GS) determined as race 9 by using the differential varieties of Williams. On the other hand, all the tested cultivars were highly susceptible to YC isolate (race 2). The results suggest that this method is efficient screening method of cabbage and broccoli for resistance to P. brassicae.

Effect of Azospirillum brasilense and Methylobacterium oryzae Inoculation on Growth of Red Pepper (Capsicum annuum L.)

  • Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • Plant growth-promoting effects of rhizobacterial inoculation obtained in pot experiments cannot always be dependably reproduced in fields. In this study, we investigated the effect of inoculation with Azospirillum brasilense and Methylobacterium oryzae, which have displayed growth promoting effects in several pot experiments, on growth and fruit yield of red pepper under field condition in a plastic-film house. Four rows spaced 90 cm apart were prepared after application of compost ($10Mg\;ha^{-1}$), and red pepper seedlings (Capsicum annum L., Nocgwang) were transplanted in each row with 40-cm space. Experimental treatments were consisted of A. brasilense CW903 inoculation, M. oryzae CBMB20 inoculation, and uninoculated control. Twelve plots, 10 plants per plot, were allotted to the three treatments with four replicates in a completely randomized design. At the time of transplanting, 50 mL of each inoculum ($1{\times}10^8cells\;mL^{-1}$) was introduced into root zone soil of each plant, and re-inoculated at 7 and 14 days after transplant. Plant growth and fruit yield were measured during the experiment. Both A. brasilense CW903 and M. oryzae CBMB20 could not promote growth of red pepper plants. All growth parameters measured were not significantly different among treatments. There were large variations in fruit yield recorded on plot basis, and no statistically significant differences were found among treatments. The failure to demonstrate the expected plant growth promoting effect of the inoculants is possibly due to various environmental factors, including weather and soil characteristics, reducing the possibility to express the potential of the inoculated bacterial strains.

Effect of Co-inoculation of Two Bacteria on Phosphate Solubilization

  • Lee, Yu-Jin;Lee, Heon-Hwak;Lee, Chan-Jung;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.318-326
    • /
    • 2016
  • Two phosphate solubilizing bacteria, Pantoea rodasii PSB-11and Enterobacter aerogenes PSB-12, were isolated from button mushroom compost and employed to assess their synergistic effect in liquid medium and on growth of green gram plants by single and co-inoculation of the strains. Co-inoculation of two strains was found to release the highest content of soluble phosphorus ($521{\mu}g\;ml^{-1}$) into the medium, followed by single inoculation of Pantoea strain ($485{\mu}g\;ml^{-1}$) and Enterobacter strain ($470{\mu}g\;ml^{-1}$). However, there was no significant difference between single inoculation of bacterial strain and co-inoculation of two bacterial strains in terms of phosphorous release. The highest pH reduction, organic acid production and glucose consumption was observed in the E. aerogenes PSB-12 single inoculated culture medium rather than those of co-inoculation. According to the plant growth promotion bioassay, co-inoculated mung bean seedlings recorded 10.6% and 10.7% higher shoot and root growth respectively compared to the control. Therefore, in concluding, co-inoculation of the strains P. rodasii and E. aerogenes displayed better performance in stimulating plant growth than inoculation of each strain alone. However, being short assessment period of the present study, we recommend in engaging further works under field conditions in order to test the suitability of the strains to be used as bio-inoculants.

Effects of Tomato-Juice and Potassium Phosphate on the Infection of Botryis cinerea LVF12 on the Tomato Leaves (토마토쥬스와 KH$_2$PO$_4$가 Botrytis Cinerea LVF12 분생포자의 토마토 감염에 미치는 영향)

  • 손지희;이재필;김철승;임은경;송주희;김현주;박현철;문병주
    • Research in Plant Disease
    • /
    • v.7 no.3
    • /
    • pp.134-139
    • /
    • 2001
  • Effects of tomato-juice and KH$_2$PO$_4$ as exogenous nutrients on the infection of Botrytis cinerea LVF12 and pathogenicity to tomato were investigated. B. cinerea LVF12, which was previously reported as a casual agent of the gray mold rot of perilla, was used for pathogenesis on tomato leaves. No infection was induced, and no lesion developed on tomato leaves by the conidial suspension of LVF12 when the inoculum was prepared in sterilized water. However, when the conidial suspensions of LVF12 added with various concentrations and conditions of tomato-juice were inoculated on whole tomato plants, the disease was induced readily, Among them, 20% tomato juice with 0.1M KH$_2$PO$_4$ appeared to be the most suitable nutrient to promote high disease incidence on tomato. For the pathogenicity test according to the growing stage of tomato, the mature leaves were more susceptible than seedlings. Symptoms on the infected plants were initial small gray spots at the inoculated area. Later the whole leaves, petioles and stems became gray and eventually fell off, Under high humidity conditions, the diseased leaves and stems were covered with gray hyphae and conidia. All symptoms of infected plants were identical to those in the field conditions.

  • PDF

Synergistic effect of co-inoculation with phosphate-solubilizing bacteria

  • Park, Jin-Hee;Lee, Heon-Hak;Han, Chang-Hoon;Yoo, Jeoung-Ah;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.401-414
    • /
    • 2016
  • The synergistic effect on phosphate solubilization of single- and co-inoculation of two phosphate solubilizing bacteria, Burkholderia anthina PSB-15 and Enterobacter aerogenes PSB-16, was assessed in liquid medium and green gram plants. Co-inoculation of two strains was found to release the highest content of soluble phosphorus ($519{\mu}g\;mL^{-1}$) into the medium, followed by single inoculation of Burkholderia strain ($492{\mu}g\;mL^{-1}$) and Enterobacter strain ($483{\mu}g\;mL^{-1}$). However, there was no significant difference between single inoculation of bacterial strain and co-inoculation of two bacterial strains in terms of phosphorous release. The highest pH reduction, organic acid production, and glucose consumption were observed in the culture medium co-inoculated with PSB-15 and PSB-16 strains rather than that of single inoculation. Based on the plant growth promotion bioassay, co-inoculated mung bean seedlings recorded 9% and 8% higher shoot and root growth, respectively, compared to the control. Therefore, in conclusion, co-inoculation of the strains B. anthina and E. aerogenes displayed better performance in stimulating plant growth than inoculation of each strain alone. However, considering the short assessment period of the present study, we recommend engaging in further work under field conditions in order to test the suitability of these strains as bio-inoculants.

The Plant Growth-Promoting Fungus Aspergillus ustus Promotes Growth and Induces Resistance Against Different Lifestyle Pathogens in Arabidopsis thaliana

  • Salas-Marina, Miguel Angel;Silva-Flores, Miguel Angel;Cervantes-Badillo, Mayte Guadalupe;Rosales-Saavedra, Maria Teresa;Islas-Osuna, Maria Auxiliadora;Casas-Flores, Sergio
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.686-696
    • /
    • 2011
  • To deal with pathogens, plants have evolved sophisticated mechanisms including constitutive and induced defense mechanisms. Phytohormones play important roles in plant growth and development, as well as in the systemic response induced by beneficial and pathogen microorganisms. In this work, we identified an Aspergillus ustus isolate that promotes growth and induces developmental changes in Solanum tuberosum and Arabidopsis thaliana. A. ustus inoculation on A. thaliana and S. tuberosum roots induced an increase in shoot and root growth, and lateral root and root hair numbers. Assays performed on Arabidopsis lines to measure reporter gene expression of auxin-induced/ repressed or cell cycle controlled genes (DR5 and CycB1, respectively) showed enhanced GUS activity, when compared with mock-inoculated seedlings. To determine the contribution of phytohormone signaling pathways in the effect elicited by A. ustus, we evaluated the response of a collection of hormone mutants of Arabidopsis defective in auxin, ethylene, cytokinin, or abscisic acid signaling to the inoculation with this fungus. All mutant lines inoculated with A. ustus showed increased biomass production, suggesting that these genes are not required to respond to this fungus. Moreover, we demonstrated that A. ustus synthesizes auxins and gibberellins in liquid cultures. In addition, A. ustus induced systemic resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae DC3000, probably through the induction of the expression of salicylic acid, jasmonic acid/ethylene, and camalexin defense-related genes in Arabidopsis.

Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment

  • Akamatsu, Hajime;Kato, Masayasu;Ochi, Sunao;Mimuro, Genki;Matsuoka, Jun-ichi;Takahashi, Mami
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.219-233
    • /
    • 2019
  • Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.