• Title/Summary/Keyword: Inner surface

Search Result 1,864, Processing Time 0.034 seconds

Mechanical behavior of the composite curved laminates in practical applications

  • Liu, Lonquan;Zhang, Junqi;Wang, Hai;Guan, Zhongwei
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1095-1113
    • /
    • 2015
  • In order to determine the mechanical behavior of the curved laminates in practical applications, three right-angled composite brackets with different lay-ups were investigated both experimentally and numerically. In the experimental, quasi-static tests on both unidirectional and multidirectional curved composite brackets were conducted to study the progressive failure and failure modes of the curved laminates. In the numerical modeling, three-dimensional finite element analysis was used to simulate the mechanical behavior of the laminates. Here, a strength-based failure criterion, namely the Ye criterion, was used to predict the delamination failure in the composite curved laminates. The mechanical responses of the laminate subjected to off-axis tensile loading were analyzed, which include the progressive failure, the failure locations, the load-displacement relationships, the load-strain relationships, and the stress distribution around the curved region of the angled bracket. Subsequently, the effects of stacking sequence and thickness on the load carrying capacity and the stiffness of the laminates were discussed in detail. Through the experimental observation and analysis, it was found that the failure mode of all the specimens is delamination, which is initiated abruptly and develops unstably on the symmetric plane, close to the inner surface, and about $29^{\circ}$ along the circumferential direction. It was also found that the stacking sequence and the thickness have significant influences on both the load carrying capacity and the stiffness of the laminates. However, the thickness effect is less than that on the curved aluminum plate.

CERAMOGRAPHY ANALYSIS OF MOX FUEL RODS AFTER AN IRRADIATION TEST

  • Kim, Han-Soo;Jong, Chang-Yong;Lee, Byung-Ho;Oh, Jae-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.576-581
    • /
    • 2010
  • KAERI (Korea Atomic Energy Research Institute) fabricated MOX (Mixed Oxide) fuel pellets as a cooperation project with PSI (Paul Scherrer Institut) for an irradiation test in the Halden reactor. The MOX pellets were fitted into fuel rods that included instrumentation for measurement in IFE (Institutt for Energiteknikk). The fuel rods were assembled into the test rig and irradiated in the Halden reactor up to 50 MWd/kgHM. The irradiated fuel rods were transported to the IFE, where ceramography was carried out. The fuel rods were cut transversely at the relatively higher burn-up locations and then the radial cross sections were observed. Micrographs were analyzed using an image analysis program and grain sizes along the radial direction were measured by the linear intercept method. Radial cracks in the irradiated MOX were observed that were generally circumferentially closed at the pellet periphery and open in the hot central region. A circumferential crack was formed along the boundary between the dark central and the outer regions. The inner surface of the cladding was covered with an oxide layer. Pu-rich spots were observed in the outer region of the fuel pellets. The spots were surrounded by many small pores and contained some big pores inside. Metallic fission product precipitates were observed mainly in the central region and in the inside of the Pu spots. The average areal fractions of the metallic precipitates at the radial cross section were 0.41% for rod 6 and 0.32% for rod 3. In the periphery, pore density smaller than 2 ${\mu}m$ was higher than that of the other regions. The grain growth occurred from 10 ${\mu}m$ to 12 ${\mu}m$ in the central region of rod 6 during irradiation.

Distribution of Lipid and Lipase in Lipid-and Starch-Rich Seeds (지질 및 전분성 종자에서 지질 및 지질가수분해효소의 분포)

  • 김우갑
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.219-227
    • /
    • 1992
  • Formation, cellular distribution and structural changes of storage lipid, and active site and cellular localization of lipase in endosperms and cotyledons of lipid-rich seeds such as Helianthus annuus, Ricinus communis and Pinus koraiensis, and in those of starch-rich seeds such as Pisum sativum and Zea mays were investigated in relation to the seed development by cytochemical methods. In endosperms and storage cotyledons of lipid- and starch-rich seeds after seed-gathering, there were widely distributed storage material which was composed of spherical protein bodies, spherosomes, and starch granules. But cellular organelles were hardly observed in the cytoplasm. Staining pattern of vesicles released from SER, and of low electron dense membraneous granules, which were perhaps at an early stage of spherosomes, were the same as in the spherosome. Electrondense granules released from RER were observed in the vicinity of plasma membrane. As a result of lipid staining, the spherosomes were more electron dense and were uniform as compared with the protein matrix within the protein body and cytoplasmic proteinaceous granules. The major component of the spherosome was determinated to be lipid. Spherosomes and vesicles containing SER-released materials showed the same as in the electron density. Lipase activity was especially strong in the inner region and on the surface of decomposed spherosomes and near the plasma membrane.mbrane.

  • PDF

A Study on the Factors for Improvement of Chemical and Physical Properties in Fluoric Rubber Coating for Use of the Extremely Acidic Environments

  • Chang, Hyun Young;Jin, Tae Eun;So, Il Soo;Lee, Byung Seung;Kang, Min Soo
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.269-273
    • /
    • 2008
  • It is known that the fluoric resin has the most outstanding properties in the extremely acidic environment of high temperature. However, this resin is the thermal hardening type that needs long time heat treatments above $250^{\circ}C$. It's impossible to use in situ in the extremely acidic environment such as a huge FGD ductworks or industrial chemical tanks. Furthermore, even the natural hardening type fluoric coatings which can be hardened less than $120^{\circ}C$ can not be applied to the highly acidic environmental plants because of its chemical resistance. In this study, new fluoric coatings that has excellent thermal resistance, chemical resistance and corrosion resistance has been developed in order to solve above problems and to be applied to the large plant structures in the field. These newly developed coatings are organic and inorganic composite type that have fluoric rubber(100 wt%), fluoric resin(5~50 wt%), oxalates(5~30 wt%), inorganic fillers mixed with plate-type and bulk-type solids(20~150 wt%), hardeners(0.5~5 wt%), and hardening hasteners(0.1~3 wt%). The best chemical and physical properties of these coatings are acquired by variation of adhesive reinforcement agents, dispersants, leveling agents. Mixing ratios of plate-type and bulk-type inorganic fillers influence the thermal properties, abrasive resistance and chemical infiltration properties of coatings. The mixing control is also very important to have homogeneous surface and removing inner voids of coatings.

Estimation of Washing Duration of Desulfurized Absorber in a Heavy Oil Power Plant (중유화력발전소 탈황 흡수탑 세정시기예측)

  • Jang, Yeong Gi;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.1
    • /
    • pp.24-28
    • /
    • 2016
  • In desulfurization facilities of oil-fired power plant, gypsum scale is attached in the absorber inner surface as the operating time increases. For this reason, the maximum possible load of the power generation is set down, resulting in further generation stop. Cleaning of absorber for scale removal can be determined at the time of setting down of the maximum possible load. In this study, 6 weeks before the maximum possible load of the power generation was down set, at the same time and desulfurization facilities outlet $SO_2$ concentration value was more than 130ppm, absorber differential pressure exceeded $380mmH_2O$, it was confirmed to be the time that has elapsed 44 weeks after the previous absorber cleaning. Cleaning time of the absorber was predicted to be a time which has elapsed 50 weeks from the previous cleaning time.

  • PDF

Parametric Designs of a Pre-swirl Duct for the 180,000DWT Bulk Carrier Using CFD (CFD를 이용한 180,000 DWT Bulk Carrier용 Pre-Swirl Duct의 파라메트릭 설계)

  • Cho, Han-Na;Choi, Jung-Eun;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.343-352
    • /
    • 2016
  • In this study, a pre-swirl duct for the 180,000 DWT bulk carrier has been designed from a propulsion standpoint using CFD. The stern duct - designed by NMRI - was selected as the initial duct. The objective function is to minimize the value of delivered power in model scale. Design variables of the duct include duct angle, diameter, chord length, and vertical and horizontal displacements from the center. Design variables of the stators are blade number, arrangement angle, chord length, and pitch angle. A parametric design was carried out with the objective function obtained using CFD. Reynolds averaged Navier-Stokes equations have been solved; and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. MRF and sliding mesh models have been applied to simulate the actuating propeller. A self-propulsion point has been obtained from the results of towing and self-propelled computations, i.e., form factor obtained from towing computation and towing forces obtained from self-propelled computations of two propeller rotating speeds. The reduction rate of the delivered power of the improved stern duct is 2.9%, whereas that of the initial stern duct is 1.3%. The pre-swirl duct with one inner stator in upper starboard and three outer stators in portside has been designed. The delivered power due to the designed pre-swirl duct is reduced by 5.8%.

Diethylnitrosamine-induced hepatic tumorigenesis in rats 3. Electron microscopic observation of liver tissue (Diethylnitrosamine을 투여한 rat 간장의 tumorigenesis에 관하여 3. 간장조직의 전자현미경적 관찰)

  • Kwak, Soo-dong;Kim, Chong-sup;Koh, Phil-ok;Yang, Je-hoon;Seo, Deuk-lok
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.6
    • /
    • pp.1057-1065
    • /
    • 1999
  • The study was designated to investigate the electron microscopic findings following diethylnitrosamine (DEN) treatment in rats. Forty four male (Srague Dawley) rats were continuously given water containing 0.01% DEN for 13 weeks and livers of five rats with more tumor lesions at 16 and 17 weeks after initial treatment were used as EM materials. In transmission electron microscopic findings, most small-sized hepatocytes were active cells containing large mount of organelles, but light (pale staining) hepatocytes among small-sized hepatocytes were injured cells containg disorganized organelles. Tumor cells among small-sized hepatocytes were irregularly arranged and have pleomorphic nuclei containing electron dense chromatin but the organelles in cytoplasm were swelled. Large-sized hepatocytes were active cells with condensed chromatin but the cytoplasm of these cells were pale due to be injured and dilated organelles. Dark hepatocytes were apoptotic cells with homogenous pyknotic nuclei and cytoplasm, and the cytoplasm of these cells contained dilated smooth endoplasmic reticulum (sER) but these sER were non-vesiculated. Cholangiocarninoma cells were crowded and were pale by far less number of organelles in cytoplasm and nuclei. In scanning electron microscopic findings, the lumens of portal veins, bile canaliculi, bile ductules, bile ducts and sinusoids were dilated and have irregular folded inner surface by protruded parenchyma.

  • PDF

Variability of Water Quality and Limiting Factor for Primary Production in Semi-enclosed Masan Bay, South Sea of Korea (한국 남해 마산만에서 수질환경의 계절적 변동과 기초생산 제한인자)

  • Lim, Dhong-Il;Kim, Young-Ok;Kang, Mi-Ran;Jang, Pung-Kuk;Shin, Kyoung-Soon;Jang, Man
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.349-366
    • /
    • 2007
  • Seasonal variations of various physicochemical components (temperature, salinity, pH, DO, COD, DOC, nutrients-silicate, DIN, DIP) and potential limiting factor for phytoplankton primary production were studied in the surface water of semi-enclosed Masan Bay. Seasonal variations of nutrient concentrations, with lower values in summer and winter, and higher in fall, are probably controlled by freshwater loadings to the bay, benthic flux and magnitude of occurrence of phytoplankton communities. Their spatial distributional patterns are primarily dependent on physical mixing process between freshwater and coastal seawater, which result in a decreasing spatial gradient from inner to outer part of the bay. In the fall season of strong wave action, the major part of nutrient inputs (silicate, ammonium, dissolved inorganic phosphorus) comes from regeneration (benthic flux) at sediment-water interface. During the summer period, high Si:DIN and Si:DIP and low DIN:DIP relative to Redfield ratios suggest a N- and secondarily P-deficiency. During other seasons, however, silicate is the potential limiting factor for primary production, although the Si-deficiency is less pronounced in the outer region of the bay. Indeed, phytoplankton communities in Masan Bay are largely affected by the seasonal variability of limiting nutrients. On the other hand, the severe depletion of DIN (relatively higher silicate level) during summer with high freshwater discharge probably can be explained by N-uptake of temporary nanoflagellate blooms, which responds rapidly to pulsed nutrient loading events. In Masan Bay, this rapid nutrient consumption is considerably important as it can modify the phytoplankton community structures.

Analysis of SCC Behavior of Alloy 600 Nozzle Penetration According to Residual Stress Induced by Dissimilar Metal Welding (Alloy 600 노즐관통부의 이종금속용접 잔류응력에 따른 응력부식균열 거동 분석)

  • Kim, Sung-Woo;Kim, Hong-Pyo;Kim, Dong-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.34-41
    • /
    • 2010
  • This work is concerned with the analysis of stress corrosion cracking(SCC) behavior of Alloy 600 nozzle penetration mock-up according to a residual stress induced by a dissimilar metal welding(DMW) in a nuclear reactor pressure vessel. The effects of the dimension and materials of the nozzle penetration on the deformation and the residual stress induced by DMW were investigated using a finite element analysis(FEA). The inner diameter(ID) change of the nozzle by DMW and its dependance on the design variables, calculated by FEA, were well consistent with those measured from the mock-up. Accelerated SCC tests were performed for three mock-ups with different wall thicknesses in a highly acidic solution to investigate mainly the effect of the residual stress on the SCC behavior of Alloy 600 nozzle. From a destructive examination of the mock-up after the tests, the SCC behavior of the nozzle was fairly related with the residual stress induced by DMW : axial cracks were found in the ID surface of the nozzle within the J-weld region where the highest tensile hoop stress was predicted by FEA, while circumferential cracks were observed beyond both J-weld root and toe where the highest tensile axial stress was expected.

  • PDF

Biological Hydrogen Production from Mixed Waste in a Polyurethane Foam-sequencing Batch Reactor (혼합폐기물 및 폴리우레탄 담체를 충전한 연속회분식공정을 이용한 생물학적 수소생산)

  • Lee, Jung-Yeol;Wee, Daehyun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.307-311
    • /
    • 2014
  • This study investigated the effects of polyurethane foam on continuous hydrogen production from mixed wastes. Molasses was co-fermented with non-pretreated sewage sludge in a sequencing batch reactor. The results indicated that the addition of polyurethane foams as a microbial carrier in the reactor mitigated biomass loss at HRT 12 h, while most of the biomass was washed out during the operation period with no carrier. There was a stable hydrogen production rate of $0.4L-H_2/l/d$ in the carrier-sequencing batch reactor. Suspended biomass in the carrier-reactor indicated it possessed the highest specific hydrogen production rate ($241{\pm}4ml-H_2/g\;VSS/d$) when compared to that of biomass on the surface ($133{\pm}10ml-H_2/g\;VSS/d$) or inner carrier ($95{\pm}14ml-H_2/g\;VSS/d$).