• 제목/요약/키워드: Inner heat exchanger

Search Result 119, Processing Time 0.022 seconds

Performance Analysis of R744 (Carbon Dioxide) Transcritical Refrigeration System Using Internal Heat Exchanger (내부 열교환기를 이용한 R744용 초임계 냉동사이클의 성능 분석)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.459-465
    • /
    • 2009
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system. These internal heat exchangers(liquid-suction or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as gas cooler pressure and evaporation temperatures, superheat in the evaporator and temperature of gas cooler outlet, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R744, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative capacity index) of this system. With a thorough grasp of these effect, it is necessary to design the R744 compression refrigeration cycle using internal heat exchanger.

Thermal Analysis on Triple-Passage Heat Exchangers for a Continuous Hot-Steel Tube Cooling System

  • Ko, Bong-Hwan;Park, Seung-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.10-18
    • /
    • 2002
  • The objective of present study is to analyze a concentric triple-passage heat exchanger for an optimal design of a continuous hot steel-tube cooling system, where a hot-steel tube line is passing through an antioxidant gas with a constant speed. Velocities and temperatures of the inert gas flowing between inner and outer tubes are calculated theoretically for laminar and numerically for turbulent flow regimes. From their profiles Nusselt numbers and friction factors are calculated (or various ratios of inner/outer tube radii and relative velocities. With these Nusselt numbers triple-passage heat exchangers are investigated for their thermal characteristics. It is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since local heat transfer coefficients for flows through an annulus are dependent on local wall heat flux ratios.

Effects of Accumulator Heat Exchanger on the Performance of a Refrigeration System (열교환기 내장형 어큐뮬레이터가 냉동시스템의 성능에 미치는 영향에 관한 연구)

  • Kang Hoon;Choi Kwang-Min;Park Cha-Sik;Kim Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.418-425
    • /
    • 2006
  • An AHX (Accumulator Heat exchanger) consists of a commercial accumulator and an inner heat exchanger located inside of the accumulator. The AHX is used in multi air-conditioners to assure that liquid-phase refrigerant enters into the expansion device. This purpose is achieved by heat transfer between the refrigerant leaving the evaporator and the refrigerant leaving the condenser. In this study, the effects of AHX on the performance of a refrigeration system using R-22 were measured and the test results were analyzed. The operating characteristics of the refrigeration system with the AHX are considerably different from those without the AHX. Therefore, it is required to determine optimum refrigerant charge and optimum operating conditions when the AHX is used in the refrigeration system having a constant flow-area expansion device such as capillary tube.

Thermal analysis on triple-passage heat exchangers for a hot tube cooling system (고온의 강관 냉각용 삼중 열교환기에 대한 열해석)

  • 고봉환;박승호;신동신
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.615-623
    • /
    • 1999
  • The objective of present study is to analyze a hot steel-tube cooling system as a kind of concentric triple-passage heat exchanger, whose inner tube is moving with a constant speed. Velocities and temperatures of an antioxidant gas flowing between inner and outer tubes are calculated theoretically for both laminar and turbulent flow regimes and used to give Nusselt numbers and friction factors with respect to various radius ratios and velocity ratios. In addition, it is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since the local heat transfer coefficients are dependent on the local heat flux ratios.

  • PDF

Experimental Study on Heat Transfer Performance of Oil Cooler (오일 쿨러의 열전달 성능에 관한 실험적 연구)

  • Cho, Dong-Hyun;Lim, Tae-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2328-2333
    • /
    • 2008
  • The experimental study was carried out to evaluate the heat transfer performance on the shell side of shell-and-plate finned tube heat exchanger with three different tube numbers(9, 13 and 19). Oil flowing on the shell side was cooled by cold water flowing inside the tubes. A shell-and-tube heat exchanger of an oil cooler consisted of one shell pass and two tube passes with the inner tube diameter of 8.82 mm and the tube length of 575 mm. Mass flow rate was varied from 1.2 to $6.0\;m^3/h$ for oil and from 0.6 to $3.0\;m^3/h$ for cold water, respectively. From the experiment of shell-and-plate finned tube heat exchanger, the shell side heat transfer coefficient of heat exchanger with 9 tubes was compared with that of 13 and 19 tubes. It was found that the heat exchanger with 9 plate finned tubes showed more performance of heat transfer than that of 13 and 19 tubes.

  • PDF

Assessment of the performances of a heat exchanger in a light helicopter

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.469-482
    • /
    • 2015
  • This study has the aim to develop a numerical design regarding the position and the inner performances of a heat exchanger in a light helicopter. the problem was to find first of all the best position of the heat exchanger inside the engine vane in order to maximize the air flow rate capable to pass through the heat exchanger section. It is to be said that the only air contribution in the vane comes from the opening present in the roof under the main rotor. The design has been performed by means of the commercial code Fluent and using the well known grid generator ICEM CFD. Different positions are first investigated so to establish the best one. Subsequently, different areas of the opening on the roof have been considered in order to maximize even more the flow rate in the heat exchanger that was not sufficient based on the first guess of velocity, as aforementioned. At the end interesting design results are presented and discussed by contours of fields and values.

Performance Characteristics of Vehicle Air Conditioning System Using Internal Heat Exchanger with Inner Fin (휜 타입 내부열교환기 적용에 따른 차량용 냉방시스템 성능 특성)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • Internal heat exchanger (IHX) apparatus using the temperature difference between high and low pressure lines in vehicle air conditioning system is a good method to enhance the cooling performance. In this study, we designed various double-pipe internal heat exchangers which have inner fins between the internal pipe and external pipe. We also measured the performance characteristic (pressure drop, cooling capacity, compressor work and coefficient of performance (COP)) of the modified internal heat exchangers that had the change of the fin height and the inside shape of the internal pipe. This experimental results indicated that the liner and serration type internal heat exchanger was the best cooling performance. In addition, the air conditioning system with the liner and serration type internal heat exchanger showed the improved performances of about 6.4% and 9.2%, respectively, for the cooling capacity and COP.

Design of a Heat Exchanger to Reduce the Exhaust Temperature in a Spark-Ignition Engine (가솔린 엔진에서 배기 온도 저감을 위한 열교환기 설계 최적화)

  • Lee, Seok-Hwan;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.10-17
    • /
    • 2007
  • Design of experiments (DOE) technique has been used to design an exhaust heat exchanger to reduce the exhaust gas temperature under high load conditions in a spark-ignition engine. The DOE evaluates the influence and the interaction of a selected eight design parameters of the heat exchanger affecting the cooling performance of the exhaust gas through a limited number of experiments. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to reduce thermal aging. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, and number of fin), coolant direction, heat exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.

Heat Flow Analysis of Inner Groove Tube for Latent Heat Exchanger in Condensing Gas Boiler (콘덴싱 가스보일러 잠열교환기의 이너 그루브 튜브 열유동 해석)

  • Yong, Kyeong-Jung;Lim, Byung-Chul;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4052-4056
    • /
    • 2014
  • These days, household condensing gas boilers are an obligatory trend. The use of environmentally-friendly boilers that emit less pollutant, such as CO and NOx, are strongly recommended. In this paper, heat flow analysis of the additional inner groove in the tube of the secondary latent heat exchanger was studied to increase the efficiency. A 20% difference in the heat transfer area was obtained with the addition of an inner grove, which showed an increase in the amount of heat transferred. This was confirmed using three-dimensional numerical analysis. With the addition of an inner groove, the exit temperature increased by $1^{\circ}C$. This increase in exit temperature was considered to be a substantial increase in the efficiency of the condensing gas boiler.

An Experimental Study on the Heat Exchanger for the Engine Waste Heat Recovery Using Serrated Fins and Bayonet Tube (톱니형휜이 부착된 2중 열교환관을 이용한 엔진 배열회수기에 관한 실험적 연구)

  • Yang Tae-Jin;Kim Jong-Soo;Im Yong-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.685-691
    • /
    • 2005
  • In this study, high performance waste heat recovery heat exchanger was developed using the bayonet tube with spiral serrated fins. Especially, heat exchanger of the bayonet tube type was operated well because of double water passes mechanism and characteristics. A cooling water Passes down inner tubes to thimble-form tubes, then flows back up as it boils. The heat exchanger of bayonet tube type was composed of steel tube with 7channels$(I.D_1\;14mm.\;I.D_2\;31.6mm)$ and spiral serrated fins. The performance tests were conducted under the following conditions A cooling water flow rate was 273kg/h and engine l·pm was varied from 750rpm to 3500 rpm. From the experimental result. waste heat recovery was 9.21kW when engine rpm was 3500. and pressure drop was $15\~260mmHg/m^3$ The effectiveness of heat exchanger was about /$0.7\~0.9$. The performance of heat exchanger was evaluated by using the $\varepsilon-NTU$ method. In the study the NTU of the heat exchanger was $1.57\~2.33$.