• Title/Summary/Keyword: Inner Circular Cylinder

Search Result 36, Processing Time 0.028 seconds

A Numerical Study of Natural Convection in a Square Enclosure with a Circular Cylinder at Different Vertical Locations (원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구)

  • Kim, Byeong-Su;Lee, Dae-Sung;Yoon, Hyun-Sik;Lee, Hyun-Goo;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.273-282
    • /
    • 2007
  • Numerical calculations are carried out for the natural convection induced by temperature difference between a cold outer square cylinder and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inner circular cylinder based on finite volume method, for different Rayleigh numbers varying over the range of $10^4\;to\;10^6$. The study goes further to investigate the effect of an inner cylinder location on the heat transfer and fluid flow. The location of inner circular cylinder is changed vertically along the center-line of square enclosure. The number, size and formation of cell strongly depend on Rayleigh number and the position of inner circular cylinder. The changes in heat transfer quantities have been presented.

A numerical study of natural convection in a square enclosure with a circular cylinder for high Rayleigh number (높은 Rayleigh 수에서 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구)

  • Yu, Dong-Hun;Yoon, Hyun-Sik;Ha, Man-Yeong;Kim, Byeong-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2744-2749
    • /
    • 2008
  • Numerical calculations are carried out for the natural convection induced by temperature difference between a cold outer square cylinder and a hot inner circular cylinder for Rayleigh number of $Ra=10^7$. This study investigates the effect of the inner cylinder location on the heat transfer and fluid flow. The location of inner circular cylinder ($\delta$) is changed vertically along the center-line of square enclosure. The natural convection bifurcates from unsteady to steady state according to $\delta$. Two critical positions of ${\delta}_{C,L}$ and ${\delta}_{C,U}$ as a lower bound and an upper bound are ${\delta}_{C,L}=0.05$ and ${\delta}_{C,U}=0.18$, respectively. Within the defined bounds, the thermal and flow fields are steady state. When the inner cylinder locates at ${\delta}{\geq}{\delta}_{C,U}$, the space between the upper surface of inner cylinder and the top surface of the enclosure forms a relatively shallow layer where the natural convection characterized as the pure Rayleigh-Benard convection forms alternately the upwelling and downwelling plums, as a result that a series of cells known as Benard cells is derived.

  • PDF

Flow control downstream of a circular cylinder by a permeable cylinder in deep water

  • Gozmen, Bengi;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.389-404
    • /
    • 2014
  • The flow characteristics of a circular cylinder surrounded by an outer permeable cylinder were experimentally investigated using Particle Image Velocimetry Technique in deep water flow. In order to consider the effects of diameter and porosity of the outer cylinder on flow structures of the inner cylinder, five different outer cylinder diameters (D=37.5, 52.5, 60, 75 and 90 mm) and eight different porosities (${\beta}$=0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8 and 0.85) were selected. During the experiments, the diameter of inner cylinder was kept constant as d=30 mm. The depth-averaged free-stream velocity was adjusted as U=0.156 m/s, which corresponds to the Reynolds number of Re=5000 based on the inner cylinder diameter. It has been concluded that both the outer permeable cylinder diameter and the porosity have important influences on the attenuation of vortex shedding in the wake region. The presence of outer permeable cylinder decreases the magnitude of Reynolds shear stress and turbulent kinetic energy compared to the bare cylinder case. Moreover, the spectral analysis of vortex shedding frequency has revealed that the dominant frequency of vortex shedding downstream of the cylinder arrangement also reduces substantially due to the weakened Karman shear layer instability.

The Effect of the Prandtl Number on Natural Convection in a Square Enclosure with Inner Cylinder of Various Positions (Prandtl 수 변화가 다양한 위치의 원형실린더가 존재하는 정사각형 밀폐계 내부 자연대류 현상에 미치는 영향)

  • Seong, Seon Yu;Choi, Changyoung;Ha, Man Yeong;Yoon, Hyun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.943-950
    • /
    • 2014
  • This paper presents a numerical study conducted for analyzing the effect of the Prandtl number on natural convection in a square enclosure with an inner circular cylinder in various positons. Several Prandtl numbers (Pr = 0.1, 0.7, and 7) and Rayleigh numbers (Ra = $10^3$, $10^4$ and $10^5$) are considered in the numerical study, along with different positions of the inner circular cylinder. The position of the inner circular cylinder is changed in steps of 0.1 in the range of -0.2 to 0.2. The effect of the Prandtl number on natural convection in the enclosure is analyzed on the basis of the thermal and flow fields and the distribution of the Nusselt number. Regardless of the position of the cylinder, when the Rayleigh number is $10^5$, the surface-averaged Nusselt number of the inner cylinder and the enclosure increases as the Prandtl number increases.

Effect of Aspect Ratio of Enclosure with Inner Circular Cylinder on Three-Dimensional Natural Convection (원형 실린더가 존재하는 밀폐계의 종횡비 변화가 3차원 자연대류 현상에 미치는 영향)

  • Lee, Jeong Min;Seo, Young Min;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.717-726
    • /
    • 2016
  • This study evaluated the effect of aspect ratio of an enclosure with a heated inner circular cylinder on three-dimensional natural convection. The immersed boundary method was used to model the inner circular cylinder based on the finite volume method. The Rayleigh number was varied between $10^5$ and $10^6$, and the Prandtl number was maintained at 0.7. The aspect ratio of the three-dimensional enclosure was changed in steps of 1 within a range of 1-4 by increasing the width of the enclosure. In this study, the flow and thermal fields in the enclosure reached the steady state, and showed a mirror-symmetric pattern with respect to the center plane (x=0). In addition, the surface-averaged Nusselt number of the inner circular cylinder increased, while the total surface-averaged Nusselt number of the enclosure walls decreased with increase in the aspect ratio of the enclosure.

Effect of Variation of Heated Bottom Wall Area on Natural Convection in Square Enclosure with Inner Circular Cylinder (원형 실린더가 존재하는 사각 밀폐계 바닥면의 고온 영역 변화가 자연대류 현상에 미치는 영향)

  • Jo, Hyun Woo;Yoon, Hyun Sik;Lee, Hyo Jeong;Kim, Minsung;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.991-998
    • /
    • 2013
  • A numerical study is carried out for natural convection in an enclosure with an inner hot cylinder at the center. The top wall is cold, the bottom and both side walls of the enclosure are adiabatic, and the cylinder is heated. The bottom wall is heated locally at the middle. The ratio (w) is defined by as the width of the bottom wall to that of the heated local area. The immersed boundary method (IBM) is used to model an inner circular cylinder based on the finite volume method (FVM). This study investigates the effect of w on natural convection in an enclosure with an inner heated cylinder for Rayleigh numbers of $10^6$. At $6Ra=10^6$, thermal and flow fields show time-dependent characteristics after their full development.

Characteristics of Vortex Shedding behind a Circular Cylinder with Serrated Fins (Serrated Fin이 부착된 튜브의 와유출특성 연구)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.570-575
    • /
    • 2001
  • An experimental study is performed to investigate the characteristics of vortex shedding behind a circular cylinder with serrated fins using hot-wire anemometer. Strouhal numbers which are calculated using outer diameter of a circular cylinder with serrated fins are higher than that of a circular cylinder. Fin thickness and pitch are closely related with vortex shedding frequency and play increasing or decreasing vortex shedding after transient Reynolds numbers. Strouhal numbers using effective diameters which are proposed in this paper agree with that of a circular cylinder. After transient Reynolds number, a trend of Strouhal number can be estimated by checking the ratio of effective diameter to inner diameter.

  • PDF

Characteristics of Vortex Shedding behind a Circular Cylinder with Serrated Fins (톱니형 핀이 부착된 튜브의 와유출특성 연구)

  • Bu, Jeong-Suk;Ryu, Byeong-Nam;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1077-1086
    • /
    • 2001
  • An experimental study is performed to investigate the characteristics of vortex shedding behind a circular cylinder with serrated fins using hot-wire anemometer. Strouhal numbers which are calculated using outer diameter of a circular cylinder with serrated fins are higher than that of a circular cylinder. Fin thickness and pitch are closely related with vortex shedding frequency and play increasing or decreasing vortex shedding after transient Reynolds number. Strouhal numbers using effective diameters which are proposed in this paper agree with that of a circular cylinder. After transient Reynolds number, a trend of Strouhal number can be estimated by checking the ratio of effective diameter to inner diameter.

Effect of Inner Circular Cylinder Size on Three-Dimensional Natural Convection in Cubical Enclosure (내부 원형 실린더의 크기가 정육면체 밀폐계 내부의 3 차원 자연대류 현상에 미치는 영향)

  • Seo, Young Min;Choi, Changyoung;Ha, Man Yeong;Park, Sang Hu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.975-982
    • /
    • 2014
  • This study evaluates the effect of a heated circular cylinder's size on three-dimensional natural convection in a cubical enclosure. The Rayleigh number was varied between $10^3$ and $10^5$, and the Prandtl number was maintained at 0.7. In this study, the radius of the circular cylinder was changed by 0.1 L within a range of 0.1-0.4 L. The thermal and fluid flow characteristics were regarded to be independent of time in the range of the Rayleigh number and cylinder radius considered in this study. The surface-averaged Nusselt numbers of the cylinder and the enclosure were found to increase with the increase in the radius of the cylinder. The effect of the cylinder's size on natural convection in the enclosure was analyzed across the thermal and flow fields, and the distributions of the Nusselt numbers.

The Effect of Variation in Angle of the Elliptic Cylinder on Natural Convection in a Square Enclosure (타원형 실린더의 각도 변화가 사각 밀폐계 내부의 자연대류 현상에 미치는 영향)

  • Son, Yong Jin;Ha, Man Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.58-67
    • /
    • 2018
  • This study investigated the effect of variation in the angle of the elliptic cylinder as well as the presence of circular cylinder on natural convection inside a square enclosure. The Rayleigh number was varied between $10^3$ and $10^6$, and the Prandtl number was fixed to 0.7. In the present study, the angle of the elliptic cylinder was changed from $0^{\circ}$ to $90^{\circ}$, and the perimeter of the elliptic cylinder was same as that of the circular cylinder. The immersed boundary method was used to capture the virtual wall boundary of the inner cylinder. With the increasing angle of the elliptic cylinder, the surface-averaged Nusselt numbers on the cylinder and the enclosure increased. In the Rayleigh number range considered in the present study, the surface-averaged Nusselt number on the elliptic cylinder over = $45^{\circ}$ was higher than that of the circular cylinder. The effect of elliptic cylinder's angle on natural convection in the enclosure was analyzed according to the flow and thermal fields, and the distributions of the Nusselt number.