DOI QR코드

DOI QR Code

원형 실린더가 존재하는 사각 밀폐계 바닥면의 고온 영역 변화가 자연대류 현상에 미치는 영향

Effect of Variation of Heated Bottom Wall Area on Natural Convection in Square Enclosure with Inner Circular Cylinder

  • 조현우 (부산대학교 기계공학부) ;
  • 윤현식 (조선해양플랜트 글로벌 핵심연구센터) ;
  • 이효정 (부산대학교 기계공학부) ;
  • 김민성 (부산대학교 기계공학부) ;
  • 하만영 (부산대학교 기계공학부)
  • Jo, Hyun Woo (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Yoon, Hyun Sik (Global Core Research Center for Ships and Offshore Plants, Pusan Nat'l Univ.) ;
  • Lee, Hyo Jeong (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kim, Minsung (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Ha, Man Yeong (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 투고 : 2013.05.10
  • 심사 : 2013.09.12
  • 발행 : 2013.11.01

초록

본 연구에서는 $6Ra=10^6$ 일 때, 사각 밀폐계 내부에 고온의 원형 실린더가 존재하는 자연대류에 대한 수치해석을 수행하였다. 밀폐계는 상부 벽면을 통해 냉각되고 양측 벽면과 고온의 국소 영역을 제외한 하부 벽면은 단열 조건이다. 하부 벽면에서 고온 영역이 차지하는 비를 w 로 정의 하였다. 반경이 밀폐계 한 변의 길이의 0.2 배인 원형 실린더를 구현하기 위해 유한체적법(FVM)에 기초한 가상 경계법(IBM)을 사용하였다. 본 연구에서는 w 가 고온의 원형 실린더를 갖는 밀폐계 내부의 자연대류에 미치는 영향을 $10^6$의 Rayleigh 수에 대해 2 차원 해를 구하였다. $10^6$의 Rayleigh 수에서는 유동장과 온도장은 시간에 따라 변하는 특성을 보였다.

A numerical study is carried out for natural convection in an enclosure with an inner hot cylinder at the center. The top wall is cold, the bottom and both side walls of the enclosure are adiabatic, and the cylinder is heated. The bottom wall is heated locally at the middle. The ratio (w) is defined by as the width of the bottom wall to that of the heated local area. The immersed boundary method (IBM) is used to model an inner circular cylinder based on the finite volume method (FVM). This study investigates the effect of w on natural convection in an enclosure with an inner heated cylinder for Rayleigh numbers of $10^6$. At $6Ra=10^6$, thermal and flow fields show time-dependent characteristics after their full development.

키워드

참고문헌

  1. Ouertatani, N., Cheikh, N.B., Beya, B.B. and Lili, T., 2008, "Numerical Simulation of Two-Dimensional Rayleigh-Benard Convection in an Enclosure," C. R. Mecanique, Vol. 336, pp. 464-470. https://doi.org/10.1016/j.crme.2008.02.004
  2. Corcione, M., 2003, "Effects of the Thermal Boundary Conditions at the Sidewalls upon Natural Convection in Rectangular Enclosures Heated from Below and Cooled from Above," Int. J. Thermal Sciences, Vol. 42, pp. 199-208. https://doi.org/10.1016/S1290-0729(02)00019-4
  3. Radhwan, A. M. and Zaki, G. M., 2000, "Laminar Natural Convection in a Square Enclosure with Discrete Heating of Vertical Walls," JKAU: Eng. Sci., Vol. 12, No. 2, pp. 83-99. https://doi.org/10.4197/Eng.12-2.5
  4. Nithyadevi, N. and Yang, R.-J., 2009, "Double Diffusive Natural Convection in a Partially Heated Enclosure with Soret and Dufour Effects," Int. J. Heat and Fluid Flow, Vol. 30, pp. 902-910. https://doi.org/10.1016/j.ijheatfluidflow.2009.04.001
  5. Alvaro, V. and Ramo'n, L. F., 1989, "Heat Transfer in Square Cavities with Partially Active Vertical Walls," Int. J. Heat Mass Transfer, Vol. 32, No. 8, pp. 1567-1574. https://doi.org/10.1016/0017-9310(89)90078-1
  6. Rahman, M. M., Manum, M. A. H., Billah, M. M., and Saidur, R., 2010, "Natural Convection Flow in a Square Cavity with Internal Heat Generation and a Flush Mounted Heater on a Side Wall," J. Naval Architecture and Marine Engineering, Vol. 7, pp. 37-50.
  7. Oztop, H. F. and Abu-Nada, E., 2008, "Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids," Int. J. Heat and Fluid Flow, Vol. 29, pp. 1326-1336. https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009
  8. Che, N. A. and Sidik, 2009, "Prediction of Natural Convection in a Square Cavity with Partially Heated from Below and Symmetrical Cooling from Sides by the Finite Difference Lattice Boltzmann Method.," European Journal of Scientific Research, Vol. 35, pp. 347-354.
  9. Aydin, O. and Yang, W.-J., 2000, "Natural Convection in Enclosures with Localized Heating from Below and Symmetrical Cooling from Sides.," Int. J. Numerical Methods for Heat & Fluid Flow, Vol. 10, No. 5, pp. 518-529. https://doi.org/10.1108/09615530010338196
  10. Saravanan, S. and Sivaraj, C., 2011, "Natural Convection in an Enclosure with a Localized Nonuniform Heat Source on the Bottom Wall," Int. J. Heat and Mass Transfer, Vol. 54, pp. 2820-2828. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.058
  11. Hussain, S.H. and Hussein, A.K., 2011, "Natural Convection Heat Transfer in a Differentially Heated Square Enclosure with a Heat Generating-Conducting Circular Cylinder at Different Diagonal Locations," 6th International Advanced Technologies Symposium, 16-18 May 2011, Elazig, Turkey.
  12. Sumon, S., Goutam, S. and Islam, Q., Md., 2008, "Natural Convection in Square Enclosure with Adiabatic Cylinder at Center and Discrete Bottom Heating," Daffodil International University Journal of Science and Technology, Vol. 3, pp. 29-36.
  13. Ha, M.Y., Kim, I.K., Yoon, H.S. and Lee, S.S., 2002, "Unsteady Fluid Flow and Temperature Fields in a Horizontal Enclosure with an Adiabatic Body," Phys. Fluids, Vol. 14, pp. 3189-3202. https://doi.org/10.1063/1.1497168
  14. Ha, M.Y. Kim, I.K., Yoon, H.S., Lee, J.R., Balachandar, S. and Chun, H.H., 2002, "Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure with a Square Body," Numer. Heat Transfer Part A, Vol. 41, pp. 183-210. https://doi.org/10.1080/104077802317221393
  15. Kim, J. and Moin, P., 1985, "Application of a Fractional Step Method to Incompressible Navier-Stokes Equations," J. Comp. Physics, Vol. 59, pp. 308-323. https://doi.org/10.1016/0021-9991(85)90148-2
  16. Zang, Y., Street, R.L. and Koseff, J.R., 1994, "A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates," J. Comp. Physics, Vol. 114, pp. 18-33. https://doi.org/10.1006/jcph.1994.1146
  17. Kim, J.W., Kim, D.J. and Choi, H.C., 2001, "An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries," J. Comp. Physics, Vol. 171, pp. 132-150. https://doi.org/10.1006/jcph.2001.6778
  18. Kim, J., Kim, D. and Choi, H., 2001, "An Immersed-Boundary Finite Volume Method for Simulations of Flow in Complex Geometries," J. Comp. Physics, Vol. 171, pp. 132-150. https://doi.org/10.1006/jcph.2001.6778
  19. Kim, B.S., Lee, D.S., Ha, M.Y. and Yoon, H.S., 2008, "A Numerical Study of Natural Convection in a Square Enclosure with a Circular Cylinder at Different Vertical Locations," Int. J. Heat Mass Transfer, Vol. 51, pp. 1888-1906. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.033