DOI QR코드

DOI QR Code

Effect of Aspect Ratio of Enclosure with Inner Circular Cylinder on Three-Dimensional Natural Convection

원형 실린더가 존재하는 밀폐계의 종횡비 변화가 3차원 자연대류 현상에 미치는 영향

  • Received : 2016.06.07
  • Accepted : 2016.09.18
  • Published : 2016.11.01

Abstract

This study evaluated the effect of aspect ratio of an enclosure with a heated inner circular cylinder on three-dimensional natural convection. The immersed boundary method was used to model the inner circular cylinder based on the finite volume method. The Rayleigh number was varied between $10^5$ and $10^6$, and the Prandtl number was maintained at 0.7. The aspect ratio of the three-dimensional enclosure was changed in steps of 1 within a range of 1-4 by increasing the width of the enclosure. In this study, the flow and thermal fields in the enclosure reached the steady state, and showed a mirror-symmetric pattern with respect to the center plane (x=0). In addition, the surface-averaged Nusselt number of the inner circular cylinder increased, while the total surface-averaged Nusselt number of the enclosure walls decreased with increase in the aspect ratio of the enclosure.

본 연구는 밀폐계 내부에 고온의 원형 실린더가 존재할 때, 밀폐계의 종횡비 변화에 따른 밀폐계 내부의 3차원 자연대류 현상에 대해 수치해석을 수행하였다. 밀폐계 내부의 원형 실린더는 유한체적법(FVM)에 기초한 가상 경계법(IBM)을 사용하여 구현하였다. 본 연구에서 고려한 Rayleigh 수의 범위는 $10^5{\leq}Ra{\leq}10^6$이며, Prandtl 수는 0.7이다. 밀폐계의 폭을 변화하여 밀폐계의 종횡비를 증가시켰으며, 밀폐계의 종횡비는 $1{\leq}W/L{\leq}4$ 범위에서 1 간격으로 고려하였다. 본 연구에서 고려한 모든 Rayleigh 수와 밀폐계의 종횡비 범위에서 열유동장은 x=0 단면을 기준으로 좌우 대칭을 이루며 정상상태에 도달하였다. 또한 밀폐계의 종횡비가 증가할수록 원형 실린더의 표면 평균 Nusselt수는 증가하는 반면, 밀폐계 벽면의 표면 평균 Nusselt수는 감소하였다.

Keywords

References

  1. Fiscaletti, D., Angeli, D., Tarozzi, L. and Barozzi, G. S., 2013, "Buoyancy-induced Transitional Flows Around an Enclosed Horizontal Cylinder: An Experiment," International Journal of Heat and Mass Transfer, Vol. 58, pp. 619-631. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.039
  2. Butler, C., Newport, D. and Geron, M., 2013, "Natural Convection Experiments on a Heated Horizontal Cylinder in a Differentially Heated Square Cavity," Experimental Thermal and Fluid Science, Vol. 44, pp. 199-208. https://doi.org/10.1016/j.expthermflusci.2012.06.009
  3. Angeli, D., Levoni, P. and Barozzi, G. S., 2008, "Numerical Predictions for Stable Buoyant Regimes Within a Square Cavity Containing a Heated Horizontal Cylinder," International Journal of Heat and Mass Transfer, Vol. 51, pp. 553-565. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.007
  4. Liao, C. C. and Lin, C. A., 2012, "Influences of a Confined Elliptic Cylinder at Different Aspect Ratios and Inclinations on the Laminar Natural and Mixed Convection Flows," International Journal of Heat and Mass Transfer, Vol. 55, pp. 6638-6650. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.073
  5. Rahman, M. and Sharif, M. A. R., 2003, "Numerical Study of Laminar Natural Convection in Inclined Rectangular Enclosures of Various Aspect Ratios," Numerical Heat Transfer, Part A, Vol. 44, pp. 355-373. https://doi.org/10.1080/713838233
  6. Turan, O., Poole, R. J. and Chakraborty, N., 2012, "Influences of Boundary Conditions on Laminar Natural Convection in Rectangular Enclosures with Differentially Heated Side Walls," International Journal of Heat and Fluid Flow, Vol. 33, pp. 131-146. https://doi.org/10.1016/j.ijheatfluidflow.2011.10.009
  7. Corcione, M., 2003, "Effects of the Thermal Boundary Conditions at the Sidewalls upon Natural Convection in Rectangular Enclosures Heated from Below and Cooled from Above," International Journal of Thermal Sciences, Vol. 42, pp. 199-208. https://doi.org/10.1016/S1290-0729(02)00019-4
  8. Bouafia, M. and Daube, O., 2007, "Natural Convection for Large Temperature Gradients Around a Square Solid Body within a Rectangular Cavity," International Journal of Heat and Mass Transfer, Vol. 50, pp. 3599-3615. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.013
  9. Cesini, G., Paroncini, M., Cortella, G. and Manzan, M., 1999, "Natural Convection from a Horizontal Cylinder in a Rectangular Cavity," International Journal of Heat and Mass Transfer, Vol. 42, pp. 1801-1811. https://doi.org/10.1016/S0017-9310(98)00266-X
  10. Seo, Y. M., Doo, J. H. and Ha, M. Y., 2016, "Threedimensional Flow Instability of Natural Convection Induced by Variation in Radius of Inner Circular Cylinder Inside Cubic Enclosure," International Journal of Heat and Mass Transfer, Vol. 95, pp. 566-578. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.044
  11. Trias, F. X., Soria, M., Oliva, A. and Perez-segarra, C. D., 2007, "Direct Numerical Simulations of Twoand Three-dimensional Turbulent Natural Convection Flows in a Differentially Heated Cavity of Aspect Ratio 4," Journal of Fluid Mechanics, Vol. 586, pp. 259-293. https://doi.org/10.1017/S0022112007006908
  12. Kuehn, T. H. and Goldstein, R. J., 1978, "An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli," Journal of Heat Transfer, Vol. 100, pp. 635-640. https://doi.org/10.1115/1.3450869
  13. Kumar, R., 1988, "Study of Natural Convection in Horizontal Annuli," International Journal of Heat and Mass Transfer, Vol. 31, pp. 1137-1148. https://doi.org/10.1016/0017-9310(88)90056-7
  14. Uhlmann, M., 2005, "An Immersed Boundary Method with Direct Forcing for the Simulation of Particulate Flows," Journal of Computational Physics, Vol. 209, pp. 448-476. https://doi.org/10.1016/j.jcp.2005.03.017
  15. Kim, J. W., Kim, D. J. and Choi, H. C., 2001, "An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries," Journal of Computational Physics, Vol. 171, pp. 132-150. https://doi.org/10.1006/jcph.2001.6778
  16. Kim, J. W. and Choi, H. C., 2004, "An Immersed- Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries," KSME International Journal, Vol. 18, pp. 1026-1035. https://doi.org/10.1007/BF02990875
  17. Choi, H. C. and Moin, P., 1994, "Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow," Journal of Computational Physics, Vol. 113, pp. 1-4. https://doi.org/10.1006/jcph.1994.1112
  18. Roslan, R., Saleh, H., Hashim, I. and Bataineh, A. S., 2014, "Natural Convection in an Enclosure Containing a Sinusoidally Heated Cylindrical Source," International Journal of Heat and Mass Transfer, Vol. 70, pp. 119-127. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.011
  19. Yoon, H. S., Ha, M. Y., Kim, B. S. and Yu, D. H., 2009, "Effect of the Position of a Circular Cylinder in a Square Enclosure on Natural Convection at Rayleigh Number of $10^7$," Physics of Fluids, Vol. 21, pp. 21-31.
  20. Sheikholeslami, M., Gorji-Bandpay, M. and Ganji, D. D., 2012, "Magnetic Field Effects on Natural Convection Around a Horizontal Circular Cylinder Inside a Square Enclosure Filled with Nanofluid," International Communications in Heat and Mass Transfer, Vol. 39, pp. 978-986. https://doi.org/10.1016/j.icheatmasstransfer.2012.05.020
  21. Baranwal, A. K. and Chhabra, R., 2016, "Effect of Prandtl Number on Free Convection from Two Cylinders in a Square Enclosure," Heat Transfer Engineering, Vol. 37, pp. 545-556. https://doi.org/10.1080/01457632.2015.1060761
  22. Liao, C. C. and Lin, C. A., 2014, "Transitions of Natural Convection Flows in a Square Enclosure with a Heated Circular Cylinder," Applied Thermal Engineering, Vol. 72, pp. 41-47. https://doi.org/10.1016/j.applthermaleng.2014.02.071
  23. Jeong, J. H. and Hussain, F., 1995, "On the Identification of a Vortex," Journal of Fluid Mechanics, Vol. 285, pp. 69-94. https://doi.org/10.1017/S0022112095000462