• 제목/요약/키워드: Innate-like functions

검색결과 19건 처리시간 0.029초

Emerging role of bystander T cell activation in autoimmune diseases

  • Shim, Chae-Hyeon;Cho, Sookyung;Shin, Young-Mi;Choi, Je-Min
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.57-64
    • /
    • 2022
  • Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.

Transcript Profiling of Toll-Like Receptor mRNAs in Selected Tissues of Mink (Neovison vison)

  • Tong, Mingwei;Yi, Li;Cheng, Yuening;Zhang, Miao;Cao, Zhigang;Wang, Jianke;Zhao, Hang;Lin, Peng;Yang, Yong;Cheng, Shipeng
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2214-2223
    • /
    • 2016
  • Toll-like receptors (TLRs) can recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses against invading infectious agents. The aim of this study was to assess the transcript profile of mink TLRs (mTLRs) in mink peripheral blood mononuclear cells (PBMCs) and a range of tissues, and to explore the potential role of mTLRs in the antiviral immune response process. The results indicated that the mTLR partial nucleotide sequences had a high degree of nucleotide identity with ferret sequences (95-98%). Phylogenetic analysis showed that mammalian TLRs grouped into five TLR families, with a closer relationship of the mTLRs with those of ferret than the other mammalian sequences. Moreover, all the mTLRs were ubiquitously expressed in lymphoid organs (spleen and lymph nodes) and PBMCs. Interestingly, the mTLR expression patterns in lung, uterus, and heart showed quite a lot of similarity. Another remarkable observation was the wide expression of mTLR1-3 mRNAs in all tissues. Among the analyzed tissues, skeletal muscle was revealed to being the lowest repertoire of mTLR expression. Additionally, mink PBMCs exposed to the canine distemper virus revealed significant upregulation of mTLR2, mTLR4, mTLR7, and mTLR8 mRNAs, indicating that mTLRs have a role in innate immunity in the mink. Collectively, our results are the first to establish the basic expression patterns of mTLRs and the relationship between mTLRs and a virus, which will contribute to better understanding of the evolution and the functions of mTLRs in the innate immune system in minks.

돌연변이 Mannose-binding Lectin 합성과 세포 병리적 연구 (Synthesis and Secretion of Mutant Mannose-Binding Lectin)

  • 장호정;정경태
    • 생명과학회지
    • /
    • 제23권3호
    • /
    • pp.347-354
    • /
    • 2013
  • 선천성 면역은 감염성 매개체를 자기(self)로부터 변별할 수 있다. 선천성 면역은 감염 초기에 숙주인 자기를 보호하는 인식분자와 효과인자들로 구성되어 있다. Mannose 결합 렉틴(Mannose-binding lectin, MBL)은 $Ca^{2+}$ 의존형 렉틴에 속하며, 콜라겐 유사 domain을 함유하는 C-type 렉틴으로 선천성 면역의 중요한 분자이다. 혈액내 낮은 MBL 농도는 면역결핍 증후군을 나타내며 감염에 대한 심각한 위험성을 초래한다. 사람의 MBL 결핍증은 coding 영역의 돌연변이에 의해 나타나며, 이 돌연변이의 영향을 연구하기 위해 쥐의 상동성 유전자인 MBL-A를 이용하고 있다. 돌연변이 MBL의 기능적, 세포 생리적 연구를 위해 선행연구에서 rat wild type MBL-A 유전자를 클로닝하였으며, 본 연구에서 이 유전자에 콜라겐 유사 domain에서 발견된 세 가지 돌연변이, R40C, G42D, G45E를 site-directed mutagenesis 방법으로 모두 도입하였다. 세 가지 돌연변이가 존재하는 MBL 단백질은 정상 MBL과 마찬가지로 세포 내에서 정상적으로 발현되었으며, 여전히 렉틴 기능을 가지고 있었다. 이는 세 가지 돌연변이가 렉틴 기능을 나타내는 C-말단 쪽의 carbohydrate recognition domain에는 구조적으로, 또한 기능적으로도 영향을 미치지 않는다는 결과이다. 그러나 이 돌연변이는 MBL 단백질이 세포 밖으로 분비되는 것을 방해하였으며, 그 결과로 소포체 내에 잔류하여 소포체 망상구조(endoplasmic reticulumn network)에 커다란 손상을 주며 비정상적인 형체를 초래하였다. 이 같은 결과는 돌연변이 MBL에 의해 나타난 세포 내 병리현상의 새로운 발견으로 향후 MBL의 구조 형성과 분비 연구에 기여를 할 것으로 생각된다.

Altered Frequency, Activation, and Clinical Relevance of Circulating Innate and Innate-Like Lymphocytes in Patients With Alcoholic Liver Cirrhosis

  • Ki-Jeong Park;Hye-Mi Jin;Young-Nan Cho;Jae Hyun Yoon;Seung-Jung Kee;Hyo-Sin Kim;Yong-Wook Park
    • IMMUNE NETWORK
    • /
    • 제23권3호
    • /
    • pp.22.1-22.15
    • /
    • 2023
  • Alcoholic liver cirrhosis (ALC) is caused by chronic alcohol overconsumption and might be linked to dysregulated immune responses in the gut-liver axis. However, there is a lack of comprehensive research on levels and functions of innate lymphocytes including mucosal-associated invariant T (MAIT) cells, NKT cells, and NK (NK) cells in ALC patients. Thus, the aim of this study was to examine the levels and function of these cells, evaluate their clinical relevance, and explore their immunologic roles in the pathogenesis of ALC. Peripheral blood samples from ALC patients (n = 31) and healthy controls (HCs, n = 31) were collected. MAIT cells, NKT cells, NK cells, cytokines, CD69, PD-1, and lymphocyte-activation gene 3 (LAG-3) levels were measured by flow cytometry. Percentages and numbers of circulating MAIT cells, NKT cells, and NK cells were significantly reduced in ALC patients than in HCs. MAIT cell exhibited increased production of IL-17 and expression levels of CD69, PD-1, and LAG-3. NKT cells displayed decreased production of IFN-γ and IL-4. NK cells showed elevated CD69 expression. Absolute MAIT cell levels were positively correlated with lymphocyte count but negatively correlated with C-reactive protein. In addition, NKT cell levels were negatively correlated with hemoglobin levels. Furthermore, log-transformed absolute MAIT cell levels were negatively correlated with the Age, Bilirubin, INR, and Creatinine score. This study demonstrates that circulating MAIT cells, NKT cells, and NK cells are numerically deficient in ALC patients, and the degree of cytokine production and activation status also changed. Besides, some of their deficiencies are related to several clinical parameters. These findings provide important information about immune responses of ALC patients.

N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor

  • Lee, Han-Na;Kwon, Hyun-Mi;Park, Ji-Won;Kurokawa, Kenji;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.506-510
    • /
    • 2009
  • The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-$\kappa$B-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation.

Modulation of TNFSF expression in lymphoid tissue inducer cells by dendritic cells activated with Toll-like receptor ligands

  • Han, Sin-Suk;Koo, Ji-Hye;Bae, Jin-Gyu;Kim, Soo-Chan;Baik, Song;Kim, Mi-Yeon
    • BMB Reports
    • /
    • 제44권2호
    • /
    • pp.129-134
    • /
    • 2011
  • Toll-like receptors (TLRs), which recognize structurally conserved components among pathogens, are mainly expressed by antigen-presenting cells such as dendritic cells (DCs), B cells, and macrophages. Recognition through TLRs triggers innate immune responses and influences antigen-specific adaptive immune responses. Although studies on the expression and functions of TLRs in antigen-presenting cells have been extensively reported, studies in lymphoid tissue inducer (LTi) cells have been limited. In this study, we observed that LTi cells expressed TLR2 and TLR4 mRNA as well as TLR2 protein and upregulated OX40L, CD30L, and TRANCE expression after stimulation with the TLR2 ligand zymosan or TLR4 ligand LPS. The expression of tumor necrosis factor superfamily (TNFSF) members was significantly upregulated when cells were cocultured with DCs, suggesting that upregulated TNFSF expression may contribute to antigen-specific adaptive immune responses.

Immunomodulation of Fungal β-Glucan in Host Defense Signaling by Dectin-1

  • Batbayar, Sainkhuu;Lee, Dong-Hee;Kim, Ha-Won
    • Biomolecules & Therapeutics
    • /
    • 제20권5호
    • /
    • pp.433-445
    • /
    • 2012
  • During the course of evolution, animals encountered the harmful effects of fungi, which are strong pathogens. Therefore, they have developed powerful mechanisms to protect themselves against these fungal invaders. ${\beta}$-Glucans are glucose polymers of a linear ${\beta}$(1,3)-glucan backbone with ${\beta}$(1,6)-linked side chains. The immunostimulatory and antitumor activities of ${\beta}$-glucans have been reported; however, their mechanisms have only begun to be elucidated. Fungal and particulate ${\beta}$-glucans, despite their large size, can be taken up by the M cells of Peyer's patches, and interact with macrophages or dendritic cells (DCs) and activate systemic immune responses to overcome the fungal infection. The sampled ${\beta}$-glucans function as pathogen-associated molecular patterns (PAMPs) and are recognized by pattern recognition receptors (PRRs) on innate immune cells. Dectin-1 receptor systems have been incorporated as the PRRs of ${\beta}$-glucans in the innate immune cells of higher animal systems, which function on the front line against fungal infection, and have been exploited in cancer treatments to enhance systemic immune function. Dectin-1 on macrophages and DCs performs dual functions: internalization of ${\beta}$-glucan-containing particles and transmittance of its signals into the nucleus. This review will depict in detail how the physicochemical nature of ${\beta}$-glucan contributes to its immunostimulating effect in hosts and the potential uses of ${\beta}$-glucan by elucidating the dectin-1 signal transduction pathway. The elucidation of ${\beta}$-glucan and its signaling pathway will undoubtedly open a new research area on its potential therapeutic applications, including as immunostimulants for antifungal and anti-cancer regimens.

Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Tran, Ha Thi Thanh;Dang, Hoang Vu;Nguyen, Viet Khong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.614-628
    • /
    • 2019
  • Objective: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ${\beta}2-microglobulin$ and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ${\beta}2-microglobulin$, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.

CLIP-domain serine proteases in Drosophila innate immunity

  • Jang, In-Hwan;Nam, Hyuck-Jin;Lee, Won-Jae
    • BMB Reports
    • /
    • 제41권2호
    • /
    • pp.102-107
    • /
    • 2008
  • Extracellular proteases play an important role in a wide range of host physiological events, such as food digestion, extracellular matrix degradation, coagulation and immunity. Among the large extracellular protease family, serine proteases that contain a "paper clip"-like domain and are therefore referred to as CLIP-domain serine protease (clip-SP), have been found to be involved in unique biological processes, such as immunity and development. Despite the increasing amount of biochemical information available regarding the structure and function of clip-SPs, their in vivo physiological significance is not well known due to a lack of genetic studies. Recently, Drosophila has been shown to be a powerful genetic model system for the dissection of biological functions of the clip-SPs at the organism level. Here, the current knowledge regarding Drosophila clip-SPs has been summarized and future research directions to evaluate the role that clip-SPs play in Drosophila immunity are discussed.

Effect of IGF-I Rich Fraction from Bovine Colostral Whey on Murine Immunity

  • Hwang, Kyung-A;Ha, Woel-Kyu;Yang, Hee-Jin;Lee, Soo-Won
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권2호
    • /
    • pp.297-304
    • /
    • 2006
  • Insulin-like growth factor-I (IGF-I) rich fraction, collected components between 1 kDa and 30 kDa, was fractionated from bovine colostral whey using an ultrafiltration membrane. IGF-I was confirmed in the collected IGF-I rich fraction by both SDS-PAGE and Western blotting. The concentration of IGF-I in the IGF-I rich fraction was 10 ng/mg protein. One hundred microliters of the reconstituted IGF-I rich fraction was intraperitoneally injected into ICR male mice for 2 weeks at 24 h intervals. The functions of peritoneal macrophages, including phagocytosis, interleukin (IL)-6 and tumor necrosis factor (TNF)-${\alpha}$ production, and nitric oxide and hydrogen peroxide production, were enhanced significantly by the administration of the IGF-I rich fraction in a dose-dependent manner (p<0.01). The proliferation of Concanavalin (Con) A-stimulated and Lipopolysaccharide (LPS)-stimulated splenocytes was also determined to have been enhanced significantly by the administration of the IGF-I rich fraction in a dose-dependent manner (p<0.01). Our results indicate that the administration of IGF-I rich fraction obtained from bovine colostral whey enhances both innate and acquired immunity for ICR male mice.