DOI QR코드

DOI QR Code

Altered Frequency, Activation, and Clinical Relevance of Circulating Innate and Innate-Like Lymphocytes in Patients With Alcoholic Liver Cirrhosis

  • Ki-Jeong Park (Department of Rheumatology, Chonnam National University Medical School and Hospital) ;
  • Hye-Mi Jin (Department of Rheumatology, Chonnam National University Medical School and Hospital) ;
  • Young-Nan Cho (Department of Rheumatology, Chonnam National University Medical School and Hospital) ;
  • Jae Hyun Yoon (Department of Gastroenterology and Hepatology, Chonnam National University Medical School and Hospital) ;
  • Seung-Jung Kee (Department of Laboratory Medicine, Chonnam National University Medical School and Hospital) ;
  • Hyo-Sin Kim (Department of Surgery, Chonnam National University Medical School and Hospital) ;
  • Yong-Wook Park (Department of Rheumatology, Chonnam National University Medical School and Hospital)
  • Received : 2023.02.05
  • Accepted : 2023.03.25
  • Published : 2023.06.30

Abstract

Alcoholic liver cirrhosis (ALC) is caused by chronic alcohol overconsumption and might be linked to dysregulated immune responses in the gut-liver axis. However, there is a lack of comprehensive research on levels and functions of innate lymphocytes including mucosal-associated invariant T (MAIT) cells, NKT cells, and NK (NK) cells in ALC patients. Thus, the aim of this study was to examine the levels and function of these cells, evaluate their clinical relevance, and explore their immunologic roles in the pathogenesis of ALC. Peripheral blood samples from ALC patients (n = 31) and healthy controls (HCs, n = 31) were collected. MAIT cells, NKT cells, NK cells, cytokines, CD69, PD-1, and lymphocyte-activation gene 3 (LAG-3) levels were measured by flow cytometry. Percentages and numbers of circulating MAIT cells, NKT cells, and NK cells were significantly reduced in ALC patients than in HCs. MAIT cell exhibited increased production of IL-17 and expression levels of CD69, PD-1, and LAG-3. NKT cells displayed decreased production of IFN-γ and IL-4. NK cells showed elevated CD69 expression. Absolute MAIT cell levels were positively correlated with lymphocyte count but negatively correlated with C-reactive protein. In addition, NKT cell levels were negatively correlated with hemoglobin levels. Furthermore, log-transformed absolute MAIT cell levels were negatively correlated with the Age, Bilirubin, INR, and Creatinine score. This study demonstrates that circulating MAIT cells, NKT cells, and NK cells are numerically deficient in ALC patients, and the degree of cytokine production and activation status also changed. Besides, some of their deficiencies are related to several clinical parameters. These findings provide important information about immune responses of ALC patients.

Keywords

Acknowledgement

This study was supported by grants (2019R1A2C1003238, 2021R1A2C2013961, 2019R1F1A1058244, 2019R1I1A1A01040762) from the National Research Foundation of Korea funded by the Korean Government. It was also supported by grants (BCRI20063, BCRI20024) funded by Chonnam National University Hospital Biomedical Research Institute.

References

  1. Nutt DJ, Rehm J. Doing it by numbers: a simple approach to reducing the harms of alcohol. J Psychopharmacol 2014;28:3-7.
  2. Xiao J, Wang F, Wong NK, He J, Zhang R, Sun R, Xu Y, Liu Y, Li W, Koike K, et al. Global liver disease burdens and research trends: analysis from a Chinese perspective. J Hepatol 2019;71:212-221.
  3. Singal AK, Bataller R, Ahn J, Kamath PS, Shah VH. ACG clinical guideline: alcoholic liver disease. Am J Gastroenterol 2018;113:175-194.
  4. Orman ES, Odena G, Bataller R. Alcoholic liver disease: pathogenesis, management, and novel targets for therapy. J Gastroenterol Hepatol 2013;28 Suppl 1:77-84.
  5. Szabo G, Bala S. Alcoholic liver disease and the gut-liver axis. World J Gastroenterol 2010;16:1321-1329.
  6. Van Kaer L, Postoak JL, Wang C, Yang G, Wu L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol Immunol 2019;16:531-539.
  7. Bennett MS, Round JL, Leung DT. Innate-like lymphocytes in intestinal infections. Curr Opin Infect Dis 2015;28:457-463.
  8. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003;422:164-169.
  9. Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013;13:101-117.
  10. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, et al. Innate lymphoid cells: 10 years on. Cell 2018;174:1054-1066.
  11. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011;117:1250-1259.
  12. Mehrfeld C, Zenner S, Kornek M, Lukacs-Kornek V. The contribution of non-professional antigen-presenting cells to immunity and tolerance in the liver. Front Immunol 2018;9:635.
  13. Hegde P, Weiss E, Paradis V, Wan J, Mabire M, Sukriti S, Rautou PE, Albuquerque M, Picq O, Gupta AC, et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat Commun 2018;9:2146.
  14. Gao B, Radaeva S. Natural killer and natural killer T cells in liver fibrosis. Biochim Biophys Acta 2013;1832:1061-1069.
  15. Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Transl Immunology 2016;5:e98.
  16. Riva A, Patel V, Kurioka A, Jeffery HC, Wright G, Tarff S, Shawcross D, Ryan JM, Evans A, Azarian S, et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 2018;67:918-930.
  17. Mathews S, Feng D, Maricic I, Ju C, Kumar V, Gao B. Invariant natural killer T cells contribute to chronic-plus-binge ethanol-mediated liver injury by promoting hepatic neutrophil infiltration. Cell Mol Immunol 2016;13:206-216.
  18. Lee KC, Chen P, Maricic I, Inamine T, Hu J, Gong S, Sun JC, Dasgupta S, Lin HC, Lin YT, et al. Intestinal iNKT cells migrate to liver and contribute to hepatocyte apoptosis during alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2019;316:G585-G597.
  19. Jeong WI, Park O, Gao B. Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 2008;134:248-258.
  20. Sehgal R, Kaur S, Shasthry SM, Agrawal T, Dwivedi V, Seth D, Ramakrishna G, Sarin SK, Trehanpati N. Natural killer cells contribute to pathogenesis of severe alcoholic hepatitis by inducing lysis of endothelial progenitor cells. Alcohol Clin Exp Res 2020;44:78-86.
  21. Jepsen P, Ott P, Andersen PK, Sorensen HT, Vilstrup H. Clinical course of alcoholic liver cirrhosis: a Danish population-based cohort study. Hepatology 2010;51:1675-1682.
  22. Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet 2014;383:1749-1761.
  23. Maddrey WC, Boitnott JK, Bedine MS, Weber FL Jr, Mezey E, White RI Jr. Corticosteroid therapy of alcoholic hepatitis. Gastroenterology 1978;75:193-199.
  24. Forrest EH, Evans CD, Stewart S, Phillips M, Oo YH, McAvoy NC, Fisher NC, Singhal S, Brind A, Haydon G, et al. Analysis of factors predictive of mortality in alcoholic hepatitis and derivation and validation of the Glasgow alcoholic hepatitis score. Gut 2005;54:1174-1179.
  25. Dominguez M, Rincon D, Abraldes JG, Miquel R, Colmenero J, Bellot P, Garcia-Pagan JC, Fernandez R, Moreno M, Banares R, et al. A new scoring system for prognostic stratification of patients with alcoholic hepatitis. Am J Gastroenterol 2008;103:2747-2756.
  26. Kim WR, Biggins SW, Kremers WK, Wiesner RH, Kamath PS, Benson JT, Edwards E, Therneau TM. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med 2008;359:1018-1026.
  27. Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol 2009;7:e54.
  28. Cho YN, Kee SJ, Kim TJ, Jin HM, Kim MJ, Jung HJ, Park KJ, Lee SJ, Lee SS, Kwon YS, et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J Immunol 2014;193:3891-3901.
  29. Lee SJ, Cho YN, Kim TJ, Park SC, Park DJ, Jin HM, Lee SS, Kee SJ, Kim N, Yoo DH, et al. Natural killer T cell deficiency in active adult-onset Still's Disease: correlation of deficiency of natural killer T cells with dysfunction of natural killer cells. Arthritis Rheum 2012;64:2868-2877.
  30. Simms PE, Ellis TM. Utility of flow cytometric detection of CD69 expression as a rapid method for determining poly- and oligoclonal lymphocyte activation. Clin Diagn Lab Immunol 1996;3:301-304.
  31. Brown KE, Freeman GJ, Wherry EJ, Sharpe AH. Role of PD-1 in regulating acute infections. Curr Opin Immunol 2010;22:397-401.
  32. Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol 2011;344:269-278.
  33. Gebru YA, Choi MR, Raja G, Gupta H, Sharma SP, Choi YR, Kim HS, Yoon SJ, Kim DJ, Suk KT. Pathophysiological roles of mucosal-associated invariant T cells in the context of gut microbiota-liver axis. Microorganisms 2021;9:296.
  34. Li W, Lin EL, Liangpunsakul S, Lan J, Chalasani S, Rane S, Puri P, Kamath PS, Sanyal AJ, Shah VH, et al. Alcohol abstinence does not fully reverse abnormalities of mucosal-associated invariant T cells in the blood of patients with alcoholic hepatitis. Clin Transl Gastroenterol 2019;10:e00052.
  35. Li Y, Huang B, Jiang X, Chen W, Zhang J, Wei Y, Chen Y, Lian M, Bian Z, Miao Q, et al. Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization. Front Immunol 2018;9:1994.
  36. Lucas M, Gadola S, Meier U, Young NT, Harcourt G, Karadimitris A, Coumi N, Brown D, Dusheiko G, Cerundolo V, et al. Frequency and phenotype of circulating Vα24/Vβ11 double-positive natural killer T cells during hepatitis C virus infection. J Virol 2003;77:2251-2257.
  37. Jiang X, Zhang M, Lai Q, Huang X, Li Y, Sun J, Abbott WG, Ma S, Hou J. Restored circulating invariant NKT cells are associated with viral control in patients with chronic hepatitis B. PLoS One 2011;6:e28871.
  38. van der Vliet HJ, Molling JW, von Blomberg BM, Kolgen W, Stam AG, de Gruijl TD, Mulder CJ, Janssen HL, Nishi N, van den Eertwegh AJ, et al. Circulating Vα24+Vβ11+ NKT cell numbers and dendritic cell CD1d expression in hepatitis C virus infected patients. Clin Immunol 2005;114:183-189.
  39. Van Herck MA, Weyler J, Kwanten WJ, Dirinck EL, De Winter BY, Francque SM, Vonghia L. The differential roles of T cells in non-alcoholic fatty liver disease and obesity. Front Immunol 2019;10:82.
  40. Xu CF, Yu CH, Li YM, Xu L, Du J, Shen Z. Association of the frequency of peripheral natural killer T cells with nonalcoholic fatty liver disease. World J Gastroenterol 2007;13:4504-4508.
  41. Adler M, Taylor S, Okebugwu K, Yee H, Fielding C, Fielding G, Poles M. Intrahepatic natural killer T cell populations are increased in human hepatic steatosis. World J Gastroenterol 2011;17:1725-1731.
  42. Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, Shi M, Zhang H, Yang Y, Wu H, et al. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol 2008;129:428-437.
  43. Amadei B, Urbani S, Cazaly A, Fisicaro P, Zerbini A, Ahmed P, Missale G, Ferrari C, Khakoo SI. Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology 2010;138:1536-1545.
  44. Zhang Y, Fan Y, He W, Han Y, Bao H, Yang R, Wang B, Kong D, Wang H. Persistent deficiency of mucosa-associated invariant T (MAIT) cells during alcohol-related liver disease. Cell Biosci 2021;11:148.
  45. Haga K, Chiba A, Shibuya T, Osada T, Ishikawa D, Kodani T, Nomura O, Watanabe S, Miyake S. MAIT cells are activated and accumulated in the inflamed mucosa of ulcerative colitis. J Gastroenterol Hepatol 2016;31:965-972.
  46. Heymann F, Tacke F. Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016;13:88-110.
  47. Dias J, Boulouis C, Sobkowiak MJ, Lal KG, Emgard J, Buggert M, Parrot T, Gorin JB, Leeansyah E, Sandberg JK. Factors influencing functional heterogeneity in human mucosa-associated invariant T cells. Front Immunol 2018;9:1602.
  48. Cui K, Yan G, Xu C, Chen Y, Wang J, Zhou R, Bai L, Lian Z, Wei H, Sun R, et al. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1β in mice. J Hepatol 2015;62:1311-1318.
  49. Cui K, Yan G, Zheng X, Bai L, Wei H, Sun R, Tian Z. Suppression of natural killer cell activity by regulatory nkt10 cells aggravates alcoholic hepatosteatosis. Front Immunol 2017;8:1414. 
  50. Kwon YS, Cho YN, Kim MJ, Jin HM, Jung HJ, Kang JH, Park KJ, Kim TJ, Kee HJ, Kim N, et al. Mucosal-associated invariant T cells are numerically and functionally deficient in patients with mycobacterial infection and reflect disease activity. Tuberculosis (Edinb) 2015;95:267-274.
  51. Cho YN, Jeong HS, Park KJ, Kim HS, Kim EH, Jin HM, Jung HJ, Ju JK, Choi SE, Kang JH, et al. Altered distribution and enhanced osteoclastogenesis of mucosal-associated invariant T cells in gouty arthritis. Rheumatology (Oxford) 2020;59:2124-2134.
  52. Cnops J, De Trez C, Stijlemans B, Keirsse J, Kauffmann F, Barkhuizen M, Keeton R, Boon L, Brombacher F, Magez S. NK-, NKT- and CD8-derived IFNγ drives myeloid cell activation and erythrophagocytosis, resulting in trypanosomosis-associated acute anemia. PLoS Pathog 2015;11:e1004964.
  53. Huang H, Zuzarte-Luis V, Fragoso G, Calve A, Hoang TA, Oliero M, Chabot-Roy G, Mullins-Dansereau V, Lesage S, Santos MM. Acute invariant NKT cell activation triggers an immune response that drives prominent changes in iron homeostasis. Sci Rep 2020;10:21026.
  54. Rahimi E, Pan JJ. Prognostic models for alcoholic hepatitis. Biomark Res 2015;3:20.
  55. Gala KS, Vatsalya V. Emerging noninvasive biomarkers, and medical management strategies for alcoholic hepatitis: present understanding and scope. Cells 2020;9:524.
  56. Niehaus CE, Strunz B, Cornillet M, Falk CS, Schnieders A, Maasoumy B, Hardtke S, Manns MP, Kraft AR, Bjorkstrom NK, et al. MAIT cells are enriched and highly functional in ascites of patients with decompensated liver cirrhosis. Hepatology 2020;72:1378-1393.
  57. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P, Das A, Lopes AR, Borrow P, Williams K, et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med 2007;204:667-680.
  58. Jiang Y, Qin S, Wei X, Liu X, Guan J, Zhu H, Chang G, Chen Y, Lu H, Qian J, et al. Highly activated TRAIL+ CD56bright NK cells are associated with the liver damage in HBV-LC patients. Immunol Lett 2021;232:9-19.
  59. Wei X, Qian J, Yao W, Chen L, Guan H, Chen Y, Xie Y, Lu H, Zhang Z, Shi L, et al. Hyperactivated peripheral invariant natural killer T cells correlate with the progression of HBV-relative liver cirrhosis. Scand J Immunol 2019;90:e12775.