• 제목/요약/키워드: Innate lymphoid cells

검색결과 26건 처리시간 0.023초

마렉병 바이러스 감염에 대한 면역 반응 (Immune Responses against Marek's Disease Virus Infection)

  • 장형관;박영명;차세연;박종범
    • 한국가금학회지
    • /
    • 제35권3호
    • /
    • pp.225-240
    • /
    • 2008
  • Marek's disease virus(MDV) is a highly cell-associated, lymphotropic $\alpha$-herpesvirus that causes paralysis and neoplastic disease in chickens. The disease has been controlled by vaccination which was provided the first evidence for a malignant cancer being controlled by an antiviral vaccine. Marek's disease pathogenesis is complex, involving cytolytic and latent infection of lymphoid cells and oncogenic transformation of $CD4^+$ T cells in susceptible chickens. MDV targets a number of different cell types during its life cycle. Lymphocytes play an essential role, although within them virus production is restricted and only virion are produced. Innate and adaptive immune responses develop in response to infection, but infection of lymphocytes results in immunosuppressive effects. Hence in MDV-infected birds, MDV makes its host more vulnerable to tumour development as well as to other pathogens. All chickens are susceptible to MDV infection, and vaccination is essential to protect the susceptible host from developing clinical disease. Nevertheless, MDV infects and replicates in vaccinated chickens, with the challenge virus being shed from the feather-follicle epithelium. The outcome of infection with MDV depends on a complex interplay of factors involving the MDV pathotype and the host genotype. Host factors that influence the course of MD are predominantly the responses of the innate and adaptive immune systems, and these are modulated by: age at infection and maturity of the immune system; vaccination status; the sex of the host; and various physiological factors.

Interactions between NCR+ILC3s and the Microbiome in the Airways Shape Asthma Severity

  • Jongho Ham;Jihyun Kim;Sungmi Choi;Jaehyun Park;Min-gyung Baek;Young-Chan Kim;Kyoung-Hee Sohn;Sang-Heon Cho;Siyoung Yang;Yong-Soo Bae;Doo Hyun Chung;Sungho Won;Hana Yi;Hye Ryun Kang;Hye Young Kim
    • IMMUNE NETWORK
    • /
    • 제21권4호
    • /
    • pp.25.1-25.16
    • /
    • 2021
  • Asthma is a heterogeneous disease whose development is shaped by a variety of environmental and genetic factors. While several recent studies suggest that microbial dysbiosis in the gut may promote asthma, little is known about the relationship between the recently discovered lung microbiome and asthma. Innate lymphoid cells (ILCs) have also been shown recently to participate in asthma. To investigate the relationship between the lung microbiome, ILCs, and asthma, we recruited 23 healthy controls (HC), 42 patients with non-severe asthma, and 32 patients with severe asthma. Flow cytometry analysis showed severe asthma associated with fewer natural cytotoxicity receptor (NCR)+ILC3s in the lung. Similar changes in other ILC subsets, macrophages, and monocytes were not observed. The asthma patients did not differ from the HC in terms of the alpha and beta-diversity of the lung and gut microbiomes. However, lung function correlated positively with both NCR+ILC3 frequencies and microbial diversity in the lung. Sputum NCR+ILC3 frequencies correlated positively with lung microbiome diversity in the HC, but this relationship was inversed in severe asthma. Together, these data suggest that airway NCR+ILC3s may contribute to a healthy commensal diversity and normal lung function.

Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • 제14권3호
    • /
    • pp.128-137
    • /
    • 2014
  • Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into $CD103^+$ conventional DCs (cDCs), $CD11b^+$ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and $CD11b^+$ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, $CD103^+$ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the $CD8^+$ T cell response against the invading virus. Lymphoid $CD8{\alpha}^+$ cDCs, which have a developmental relationship with $CD103^+$ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.

Interleukin-2/antibody complex expanding Foxp3+ regulatory T cells exacerbates Th2-mediated allergic airway inflammation

  • Hong, Sung-Wook;O, Eunju;Lee, Jun Young;Yi, Jaeu;Cho, Kyungjin;Kim, Juhee;Kim, Daeun;Surh, Charles D.;Kim, Kwang Soon
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.283-288
    • /
    • 2019
  • $Foxp3^+$ regulatory $CD4^+$ T (Treg) cells play an essential role in preventing overt immune responses against self and innocuous foreign antigens. Selective expansion of endogenous Treg cells in response to the administration of interleukin (IL)-2/antibody complex, such as the IL-2/JES6-1 complex (IL-2C) in mice, is considered an attractive therapeutic approach to various immune disorders. Here, we investigated the therapeutic potential of IL-2C in allergic airway inflammation models. IL-2C treatment ameliorated Th17-mediated airway inflammation; however, unexpectedly, IL-2C treatment exacerbated Th2-mediated allergic airway inflammation by inducing the selective expansion of Th2 cells and type-2 innate lymphoid cells. We also found that IL-2 signaling is required for the expansion of Th2 cells in lymphoproliferative disease caused by Treg cell depletion. Our data suggest that IL-2C is selectively applicable to the treatment of allergic airway diseases depending on the characteristics of airway inflammation.

Transcript Profiling of Toll-Like Receptor mRNAs in Selected Tissues of Mink (Neovison vison)

  • Tong, Mingwei;Yi, Li;Cheng, Yuening;Zhang, Miao;Cao, Zhigang;Wang, Jianke;Zhao, Hang;Lin, Peng;Yang, Yong;Cheng, Shipeng
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2214-2223
    • /
    • 2016
  • Toll-like receptors (TLRs) can recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses against invading infectious agents. The aim of this study was to assess the transcript profile of mink TLRs (mTLRs) in mink peripheral blood mononuclear cells (PBMCs) and a range of tissues, and to explore the potential role of mTLRs in the antiviral immune response process. The results indicated that the mTLR partial nucleotide sequences had a high degree of nucleotide identity with ferret sequences (95-98%). Phylogenetic analysis showed that mammalian TLRs grouped into five TLR families, with a closer relationship of the mTLRs with those of ferret than the other mammalian sequences. Moreover, all the mTLRs were ubiquitously expressed in lymphoid organs (spleen and lymph nodes) and PBMCs. Interestingly, the mTLR expression patterns in lung, uterus, and heart showed quite a lot of similarity. Another remarkable observation was the wide expression of mTLR1-3 mRNAs in all tissues. Among the analyzed tissues, skeletal muscle was revealed to being the lowest repertoire of mTLR expression. Additionally, mink PBMCs exposed to the canine distemper virus revealed significant upregulation of mTLR2, mTLR4, mTLR7, and mTLR8 mRNAs, indicating that mTLRs have a role in innate immunity in the mink. Collectively, our results are the first to establish the basic expression patterns of mTLRs and the relationship between mTLRs and a virus, which will contribute to better understanding of the evolution and the functions of mTLRs in the innate immune system in minks.

k-ras와 c-myc, wnt 억제에 의한 NKG2D 리간드의 발현변화 (Inhibition of Oncogenes Affects the Expression of NKG2D Ligands in Cancer Cells)

  • 허웅;이영신;배재호
    • 생명과학회지
    • /
    • 제23권10호
    • /
    • pp.1216-1222
    • /
    • 2013
  • 자연살상세포(NK cells)은 림프구계의 세포로서 외부 침임 병원균을 막고 체내 형질변환세포를 제거하는데 참여하고 있다. 이러한 자연살상세포의 활성은 특정한 항원이 필요 없고 활성화 신호와 억제성 신호의 균형에 의해 조절되고 있다. 자연살상세포의 중요한 활성화 신호 중의 하나는 NKG2D 수용체를 통한 것인데, 이 NKG2D 수용체를 통해 자연살상세포는 암세포에 있는 NKG2D 리간드를 인식할 수 있다. 지금까지 인간에서는 여덟개의 NKG2D 리간드가 밝혀져 있고 이러한 리간드의 발현은 다양한 기전을 엄격하게 조절되고 있다. 암세포는 암유전자(oncogenes)에 의해 세포내 다양한 유전자의 발현이 정상세포와 확연히 달라지는데, 이러한 암유전자에 의해서 NKG2D 리간드의 발현이 영향을 받을 것으로 생각되어 진다. 이 연구는 인간의 암세포에서 가장 자주 발현되는 세가지 암유전자 k-ras와 c-myc, wnt의 억제를 통해 NKG2D 리간드의 발현이 어떻게 변화되는 지를 알아보았다. k-ras와 c-myc의 억제는 NKG2D 리간드의 발현을 효과적을 증가시켰고 암세포가 자연살상세포에 더욱 잘 죽게 변화되었다. 그러나 wnt 억제는 MICA와 ULBP1의 전사를 감소시켰다. wnt 억제에 의한 NKG2D 리간드의 전사억제에도 불구하고 세포막의 단백질 발현은 변하지 않아서 암세포의 자연살상세포에 대한 감수성은 별다른 변화를 보이지 않았다. 따라서 k-ras와 c-myc, wnt 억제는 각각 다른 반응을 보였으며 최종적인 자연살상세포에 대한 감수성은 NKG2D 리간드의 세포표면단백질 발현정도에 의해 결정됨을 알 수 있었다.