The appropriate injection of H2O2 is essential to produce hydroxyl radicals (OH·) by mixing H2O2 quickly and exposing the resulting H2O2 solution to UV irradiation. This study focused on evaluating mixing device of H2O2 as a design factor of UV/H2O2 AOP pilot plant using a surface water. The experimental investigation involved both experimental and model-based analyses to evaluate the mixing effect of different devices available for the H2O2 injection of a tubular hollow pipe, elliptical type of inline mixer, and nozzle-type injection mixer. Computational fluid dynamics analysis was employed to model and simulate the mixing devices. The results showed that the elliptical type of inline mixer showed the highest uniformity of 95%, followed by the nozzle mixer with 83%, and the hollow pipe with only 18%, after passing through each mixing device. These results indicated that the elliptical type of inline mixer was the most effective in mixing H2O2 in a bulk. Regarding the pressure drops between the inlet and outlet of pipe, the elliptical-type inline mixer exhibited the highest pressure drop of 15.8 kPa, which was unfavorable for operation. On the other hand, the nozzle mixer and hollow pipe showed similar pressure drops of 0.4 kPa and 0.3 kPa, respectively. Experimental study showed that the elliptical type of inline and nozzle-type injection mixers worked well for low concentration (less than 5mg/L) of H2O2 injection within 10% of the input value, indicating that both mixers were appropriate for required H2O2 concentration and mixing intensity of UV/ H2O2 AOP process. Additionally, the elliptical-type inline mixer proved to be more stable than the nozzle-type injection mixer when dealing with highly concentrated pollutants entering the UV/H2O2 AOP process. It is recommended to use a suitable mixing device to meet the desired range of H2O2 concentration in AOP process.
질소산화물은 최근에 초미세먼지 발생에 많은 영향을 주고 있어서 대기환경 개선 측면에서 사회적으로도 크게 관심이 되고 있다. 질소산화물은 주로 화력발전 등의 연소기기에서 고온의 연소가스 분위기에서 공기 중의 질소와 산소가 반응하여 발생한다. 이에 대한 저감 방법으로 원통형 버너에 코안다 노즐을 이용한 배관으로 배기가스를 재순환하는 연소에 대한 연구가 최근에 이루어지고 있다. 본 연구에서는 코안다 노즐을 사용하여 배기가스를 재순환하는 원통형 버너의 연소가스 출구의 위치를 오른쪽으로 하는 버너(Case 1 버너), 양쪽을 출구로 하는 버너(Case 2 버너), 왼쪽을 출구로 하는 버너(Case 3 버너) 형상에 대하여 전산유체해석을 통해 연구를 수행하였으며 연소 유동의 압력, 유선, 온도, 연소 반응 속도와 질소산화물의 분포 특성을 비교 분석하였다. 연소반응은 Case 1과 Case 2버너는 연소가스 재순환 유입구가 있는 오른쪽 방향으로 일어나고 Case 3 버너는 혼합가스 유입구 부근에서 일어나고 있었다. 출구에서의 온도는 Case 2버너가 양쪽으로 배출되면서 다른 버너 보다 약 $100^{\circ}C$ 정도 온도가 낮게 나타났으며 출구에서의 NOx 농도는 Case 1버너가 다른 형상 버너 보다 약 20배 크게 나타났다. 이로부터 NOx 저감을 위해서는 배기가스 재순환 버너의 출구는 양쪽으로 배출되게 하거나 연소가스 재순환 유입구 반대 방향으로 배출 되도록 하는 것이 효과적임을 알 수 있었다.
선택적 촉매 혼합법은 대용량의 화력 발전시스템에서 질소산화물을 제거하는 방법으로 많이 사용되고 있다. 분사된 암모니아와 유입된 배기가스의 균일한 혼합은 촉매 층에서의 탈질 환원 과정에서 매우 중요하다. 본 연구에서는 탈질설비의 암모니아 분사시스템 설계과정에 전산해석 기법을 적용하였다. 적용 모델은 현재 가동되고 있는 800 MW급 석탄 화력 발전소의 탈질설비이다. 유동 해석 범위는 암모니아 분사 시스템 입구에서 촉매 층 후단부이다. 2차원 유동장을 선택하였고 비압축성으로 가정하였다. 상용 소프트웨어인 ANSYS-Fluent를 사용하여 정상 상태의 난류 유동을 해석하였다. 설계 변수로는 암모니아 분사 시스템에서의 노즐 배치 간극과 분사 유량으로 4가지 경우에 대해 결과를 분석하였다. 촉매 층 입구에서의 몰 비에 의한 평균제곱근오차 값을 최적화 변수로 선정하였고 실험계획법을 기반으로 한 최적화 알고리즘을 도입하였다. 노즐 피치와 유량을 동시에 조절한 경우가 유동 균일성 관점에서 가장 우수하였다.
A numerical analysis for ROT sparger of PWR(Pressurized Water Reactor) is carried out. Computation is performed to investigate the flow characteristics as the change of design factor. As the result of this study, RDT sparger's flow resistance coefficient is K=3.53 at the present design condition if engineering mar&in is considered with 20%, and flow ratio into branch pipe is $Q_s/Q_i=0.41$. Velocity distribution at exit is not uniform because of separation in branch pipe. In the change of inlet flow rate and section area ratio of branch pipe for main pipe, flow resistance coefficient is increased as $Q_s/Q_i$ decreasing, but in the change of branch angle and outlet nozzle diameter of main pipe, flow resistance coefficient is decreased as $Q_s/Q_i$ decreasing. As the change rate of $Q_s/Q_i$ is the larger, the change rate of flow resistance coefficient is the larger. The change rate of pressure loss is the largest change as section area ratio changing. The optimal design condition of sparger is estimated as the outlet nozzle diameter ratio of main pipe is $D_s/D_i=0.333$, the section area ratio is $A_s/A_i=0.2$ and the branch angle is ${\alpha}=55^{\circ}$.
Gas-solid suspension 유동에서의 입자운동과 그 운동이 유동장에 미치는 영향을 명시하고, 이 유동에 대한 이해를 얻기 위해 많은 연구가 수행 되어 왔다. 본 논문에서는 gas-solid suspension 유동에 대한 노즐의 입구/출구 압력비, 입자/기체 부하, 입자의 직경에 따른 영향 등을 연구하기 위한 분석적 모델을 개발 하였다. 노즐을 통한 유량, Mach수, 추력계수 및 정압 변화에 대한 입자/기체 부하의 영향을 분석하였다. 그 결과로부터 입자의 존재로 인해 충격파의 강도가 줄어드는 것으로 판단되며, 입자직경이 커질수록 속도는 작아지고, slip velocity는 커지게 될 것이다. 또한, 더 작은 직경의 입자에 대한 suspension 유동은 이상기체에 대한 단상유동의 결과와 같은 경향이 나타나며, 주위 압력에 따라 더 큰 입자/기체 부하나 배압비에 대한 추력계수가 더 크게 나타났다.
본 논문은 화재의 발생 및 전파를 억제하기 위해 방수총의 내부 유체유동특성을 파악하는 것을 목적으로 한다. 본 연구를 위해 개발 중인 워터노즐을 모델링하였고, 필드실험에서 얻은 경계조건(펌프의 가압력 : 4 bar, 방수총 출구압력 : 대기압)을 적용하였으며, 유동에 대한 운동량 지배방정식을 이용하여 방수총 내부 유동에 대한 속도 및 압력분포를 얻었다. 서브파이프의 유무와 길이를 기준으로 방수총 출구의 노즐에서의 성능 특성에 영향을 미치는 2가지 주요 인자로 고려하였다. 해석 결과 기존 모델의 경우에는 서브파이프의 길이가 변하더라도 방수총의 출구영역에서 성능특성에 그다지 영향을 미치지 않았다. 이에 반해서, 서브파이프를 단관형으로 교체한 경우에는 서브파이프의 입구에서 역류가 발생하였고, 이를 제거하기 위해 서브파이프의 길이를 2배로 변화시켜 역류를 제거할 수 있었다.
The problem of determining the discharge rates of gases from pressurized vessels through pressure relief devices was dealt with comprehensively. First, starting from basic fluid flow equations, detailed modeling procedures were presented for isentropic nozzle flows and frictional flows in a pipe, respectively. Meanwhile, physical explanations were given to choking phenomena in terms of the acoustic velocity, elucidating the widespread use of Mach numbers in gas flow models. Frictional flows in a pipe were classified into adiabatic, isothermal, and general flows according to the heat transfer situation around the pipe, but the adiabatic flow model was recommended suitable for gas discharge through pressure relief devices. Next, for the isentropic nozzle flow followed by adiabatic frictional flow in the pipe, two equations were established for two unknowns that consist of the Mach numbers at the inlet and outlet of the pipe, respectively. The relationship among the ratio of downstream reservoir pressure to upstream pressure, mass flux, and total frictional loss coefficient was shown in various forms of MATLAB 2-D plot, 3-D surface plot and contour plot. Then, the profiles of gas properties and velocity in the pipe section were traced. A method to quantify the relationship among the pressure head, velocity head, and total friction loss was presented, and was used in inferring that the rapid increase in gas velocity in the region approaching the choked flow at the pipe outlet is attributed to the conversion of internal energy to kinetic energy. Finally, the Levenspiel chart reproduced in this work was compared with the Lapple chart used in API 521 Standatd.
연소실 출구 노즐을 갖는 모델 덤프 연소기에서의 연소불안정과 스피커를 이용한 능동제어의 가능성에 대한 연구를 수행하였다. 예혼합 가스의 유입속도, 연소실 길이, 당량비를 변화시켜가며 동압과 화염구조를 동시에 측정하였다. 유입속도와 연소실 길이는 덤프 연소기에서의 와류 생존시간에 영향을 주기 때문에, 연소길 길이가 길어질수록 그리고 유입속도가 작아질수록 연소불안정의 주파수는 작아지고, 동압에서 얻어진 최대 스펙트럼밀도 또한 전반적으로 작아지는 경향을 보였다. 당량비에 따라 불안정의 강도와 주파수 특성도 변했는데, 당량비의 증가에 따라 불안정 주파수와 연소불안정 강도는 증가하는 경향을 나타내었다. 폐루프 방식의 제어를 통하여 스피커를 이용한 능동제어는 이러한 혼합 acoustic-convective 모드 연소불안정으로 발생하는 와류의 발전을 감소시킬 수 있음을 확인하였다.
초고속 비행체에 적용 가능한 소모성 터빈엔진 개발을 위한 사전연구를 수행하였다. 엔진 요구도 결정을 위한 가상 운용임무형상을 선정한 후, 유사급 엔진과 참고문헌 등을 통해 확보된 설계변수 값을 활용하여 설계점 해석을 수행하였는데, 해면고도, 마하수 1.2 조건에서 터빈입구온도 3,600 R에 대한 설계점 계산결과, 비추력 2,599.4 ft/s, 비연료소모율 1.483 lb/(lb*h)이 예측되었다. 두 가지 임무형상에 대한 엔진 성능해석결과로부터 엔진 최대 순추력을 결정하는 설계변수는 천음속 및 낮은 초음속영역에서는 터빈입구온도, 높은 초음속 영역에서는 압축기 출구온도임을 확인하였다. 이밖에도 단순, 저가, 경량의 터빈엔진형상으로 축류형 다단압축기와 직류형 연소기, 1단 축류터빈, 고정 수축팽창 노즐이 적용된 단순터보제트엔진을 제시하였다.
International Journal of Aeronautical and Space Sciences
/
제15권4호
/
pp.434-443
/
2014
A turbo fan engine performance analysis and the optimization using particle swarm optimization(PSO) algorithm have been conducted to investigate the effects of major performance design parameters of an aircraft gas turbine engine. The FJ44-2C turbofan engine, which is widely used in the small business jet, CJ2 has been selected as the basic model. The design parameters consists of the bypass ratio, burner exit temperature, HP compressor ratio, fan inlet mass flow, and nozzle cooling air ratio. The sensitivity analysis of the parameters has been evaluated and the optimization of the parameters has been performed to achieve high net thrust or low specific fuel consumption.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.