• 제목/요약/키워드: Inkjet Printing System

검색결과 60건 처리시간 0.025초

고분자 유기 EL 제조를 위한 멀티헤드형 잉크젯 패터닝 시스템 (Multi-head Inkjet Patterning System for Manufacturing a Full Color Polymer Light Emitting Device (pLED))

  • 오제훈;김시경;윤희열;오세일;강유명;김광일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1219-1225
    • /
    • 2003
  • According to the increase of lifetime and efficiency, the interest in the pLED has dramatically increased recently because pLED can be applied to large-size and flexible displays. The core process in the manufacture of pLED is the printing process of red, green and blue light emitting polymers (LEP), and inkjet printing method is one of the promising technology to print red, green and blue LEP on glass substrates. In this work, we developed a multi-head inkjet patterning system with 3 heads for each color. The developed inkjet patterning system is composed of the precise positioning system, head controller circuit, real-time ink drop evaluation system, maintenance system, and stable ink supply system. Finally, we investigated the stability and reliability of the system by printing red, green and blue LEP on the dummy substrate.

  • PDF

디지털날염용 고속 구동형 잉크젯 프린팅 헤드의 특성해석 (Characteristic Analysis of High Speed Inkjet Printing Head for Digital Textile Printing)

  • 이덕규;허신
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.421-426
    • /
    • 2018
  • To develop a piezoelectric inkjet printhead for high-resolution and high-speed printing, we studied the characteristics of an inkjet printhead by analyzing the major design parameters. An analytical model for the inkjet printhead was established, and numerical analysis of the coupled first-order differential equation for the defined state variables was performed using state equations. To design the dimension of the inkjet printhead with a driving frequency of 100 kHz, the characteristics of the flow rate and discharge pressure of the nozzle were analyzed with respect to design variables of the flow chamber, effective sound wave velocity, driving voltage, and voltage waveform. It was predicted that the change in the height of the flow chamber does not significantly affect the Helmholtz resonance frequency and discharge speed of the nozzle. From the analysis of change in flow chamber width, it is observed that as the width of the flow chamber increases, the ejection speed greatly increases and the Helmholtz resonance frequency decreases considerably, thereby substantially affecting the performance of the inkjet printhead.

압전 잉크젯 헤드 모니터링 시스템 (Piezo-driven inkjet printhead monitoring system)

  • 이병렬;김상일
    • 센서학회지
    • /
    • 제19권2호
    • /
    • pp.124-129
    • /
    • 2010
  • For the industrial printing applications, the stability of the piezo-driven inkjet printhead is a major requirement. In this paper, we focused on the failure modes of the inkjet printhead and realized a method to detect and repair them at high speed. The printhead monitoring is performed by detecting the residual vibration of the actuating plate using the self- sensing capability of the piezoelectric material. To measure the channel acoustics and to identify the malfunctioning nozzle, we devised the bridge sensing circuitry and failure detection algorithm. The residual vibration signals can be affected by the boundary conditions of the channel acoustics, so it is possible to identify the failure causes by analyzing the monitoring signals. Therefore it is also possible to apply a proper restoring process to the defective printhead. The experimental results show that this method is effective in improving the reliability of the industrial printing.

Ink-jet Printing을 이용한 3D-Integration 구현 (Fabrication of Ceramic 3D Integration Technology for Ink-jet Printing)

  • 황명성;김지훈;김효태;윤영준;김종희;문주호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.332-332
    • /
    • 2010
  • We have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films withouWe have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films without a high temperature sintering process. In order to remove the coffee ring effect in the ink drop, we have introduced a co-solvent system in order to create Marangoni flow in the ink drop, which leads to the dense packing of ceramic powders on the substrate during inkjet process. The packing density of the Inkjet-printed $Al_2O_3$ films is around 60% (max. 70%) which is very high compared to the value obtained from the same material films by other conventional methods such as film casting, dip coating process, etc. The voids inside the films (which are around 40% of the entire film volume) are filled with the polymer resin (Cyanate ester) by the infiltration process. This resin infiltration is also implemented by the inkjet printing process right after the Ah03 film ink-jetting process. The microstructures of the printed $Al_2O_3$ films are investigated by Scanning Electron Microscope (SEM) to understand the degree of packing density in the printed films. The inkjet-printed $Al_2O_3$ films have been characterized to investigate its thickness and roughness. Quality factor of the printed $Al_2O_3$ film is also measured to be over 300 at 1MHz.

  • PDF

준 대기압 플라즈마를 이용한 잉크젯 프린팅용 폴리이미드 표면 개질 (Polyimide Surface Modifying using Near-Atmospheric Pressure Plasma for Inkjet Printing)

  • 문무겸;염근영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.16-16
    • /
    • 2014
  • 본 논문에서는 polymer 기판 위에 direct inkjet patterning을 효율적으로 수행하기 위하여 기판 표면의 chemical bonding과 morphology를 in-line system 적용이 가능한 near atmospheric pressure plasma (N-APP)를 이용 하여 기판을 modifying 시켰다. modified substrate 위에 inkjet printing을 이용하여 metal interconnection을 하였다. 그 결과 기존 기판에서의 line width 보다 얇은 선폭을 획득 하였고 adhesion이 향상 되었다.

  • PDF

EHD 원리를 이용한 정전기장 유도 잉크젯 프린터 헤드의 마이크로 Drop-on-Demand 제팅 성능 연구

  • 최재용;김용재;손상욱;안기철;이석한;고한서;;변도영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1947-1950
    • /
    • 2008
  • Printing technology is a very useful method in the several process of industrial fabrication due to noncontact and fast pattern generation. To make micro pattern, we investigate the electrostatic induced inkjet printer head for micro droplet generation and drop-on-demand jetting. In order to achieve the drop-on-demand micro droplet ejection by the electrostatic induced inkjet printer head, the pulsed DC voltage is supplied. In order to find optimal pulse conditions, we tested jetting performance for various bias and pulse voltages for drop-on-demand ejection. In this result, we have successful drop-on-demand operation and micro patterning. Therefore, our novel electrostatic induced inkjet head printing system will be applied industrial area comparing conventional printing technology.

  • PDF

압전 프린트 헤드에 의한 금속프린팅의 미세패턴제어 (Micro Pattern Control of Metal Printing by Piezoelectric Print-head)

  • 윤신용;최근수;백수현;장홍순;서상현
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.147-151
    • /
    • 2011
  • We were analyzed the piezoelectric characteristic for electronics printing to inkjet printing system. These applications were possible use to Actuator, MEMS, FPCB, RFID, Solar cell and LCD color filter etc. Piezoelectric print head is firing from ink droplet control consideration ink viscosity properties. At this time, micro pattern for PCB metal printing was possible by droplet control of piezoelectric driving. These driving characteristics are variable voltage pulse waveform. We are used the piezoelectric analysis software of Finite Element Method (FEM), Piezoelectric design parameters are acquired from piezoelectric analysis, and measurement of piezoelectric. It designed for piezoelectric head to possible electric print pattern of inkjet printing system. For this validity we were established through in comparison with simulation and measurement. Designed piezoelectric specification obtained voltage 98V, firing frequency 10 kHz, resolution 360dpi, drop volume 20pl, nozzle number 256, and nozzle pitch 0.33 mm.

Effect of Marangoni Flow on Surface Roughness and Packing Density of Inkjet-printed Alumina Film by Modulating Ink Solvent System.

  • Oh, Yeon-Jun;Kim, Ji-Hoon;Yoon, Young-Joon;Yoon, Ho-Gyu;Kim, Jong-Hee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.272-272
    • /
    • 2010
  • We have fabricated alumina thick films by inkjet printing technology. Two different types of ink system were formulated in order to understand their evaporation behaviors and their evaporation effects on the powder distribution on, the surface during inkjet-printed alumina thick films. Single solvent system was formulated with N,N-dimethylformamide(DMF), which led to coffee ring effects which non-uniformly distributed alumina particles on the substrate during the ink evaporation. However, Co-solvent system which consists of both Water and DMF produced relatively uniform distribution of the particles on the substrate. We believe that these two different distributions of alumina particles are attributed to the ink fluid flow directions in the ink droplets ejected from the different ceramic ink system. We have modulated inkjet parameters such as dot-to-dot distance, line-to-line distance, jetting velocity and jetting drop size in order to find out the optimum condition for the printing of alumina thick films from two different ink systems. The surface roughness, microstructures and dielectric properties of these inkjet-printed alumina thick films were investigated.

  • PDF

잉크젯 프린팅 공정을 이용한 3D Integration 집적 기술의 무소결 고충진 유전체막 제조 (Inkjet Printing Process to Fabricate Non-sintered Low Loss Density for 3D Integration Technology)

  • Jang, Hun-Woo;Kim, Ji-Hoon;Koo, Eun-Hae;Kim, Hyo-Tae;Yoon, Young-Joon;Hwang, Hae-Jin;Kim, Jong-Hee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.192-192
    • /
    • 2009
  • We have successfully demonstrated the inkjet printing process to fabricate $Al_2O_3$ thick films without a high temperature sintering process. A single solvent system had a coffee ring pattern after printing of $Al_2O_3$ dot, line and area. In order to fabricate the smooth surface of $Al_2O_3$ thick film, we have introduced a co-solvent system which has nano-sized $Al_2O_3$ powders in the mixture of Ethylene glycol monomethyl ester and Di propylene glycol methyl ether. This co-solvent system approached a uniform and dense deposition of $Al_2O_3$ powders on the substrate. The packing density of inkjet-printed $Al_2O_3$ films is more than 70% which is very high compared to the value obtained from the films synthesized by other conventional methods such as casting processes. The characterization of the inkjet-printed $Al_2O_3$ films has been implemented to investigate its thickness and roughness. Also the dielectric loss of the films has been measured to understand the feasibility of its application to 3D integration package substrate.

  • PDF

잉크젯 헤드를 이용한 액적 토출 현상의 실험적 분석 (Experimental Analysis of Droplet Formation Process for Inkjet Printhead)

  • 조용민;박성준
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.163-169
    • /
    • 2010
  • Jetting stability is the most important factors in inkjet printing because printing quality is totally determined by shape of the droplets on the substrate. In order to acquire stable jet, viscosity and dynamic behavior of the ink must be considered. In addition, waveform to drive the inkjet printhead is also to be controlled. In this study, the driving waveform composed of rising time, dwell time and falling time is optimized to obtain a stable jetting using drop watcher system. Also, effect of ink viscosity on jetting is experimentally investigated by changing the temperature of ink cartridge. As a result, jetted drop having uniform velocity is acquired.