• Title/Summary/Keyword: Injection winding

Search Result 20, Processing Time 0.026 seconds

A Study on the Design of Flyback Transformer using Flat copper winding (평면 동판 권선을 이용한 Flyback 변압기 설계에 관한 연구)

  • Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • This paper presents the optimal design of flyback transformer with the flat copper winding method of injection type suitable for the small-size and winding method of automatic type used in 90W DC to DC converter for LED-TV. This paper also proposes the flyback transformer with the flat copper winding method of injection type capable of the winding method of automatic type and the reduction of transformer size and enhanced uniformity in electrical characteristics compared to the conventional mass-production flyback transformer with the winding method of manual type. In particular, the flat copper winding transformer of injection type proposed in this paper is constructed in a vertical winding method of its transformer to realize the winding method of automatic type. The primary and secondary windings of flyback transformer with the flat copper winding method of injection type used the conventional winding, triple insulated winding and the flat copper winding method of injection type, respectively. The optimal design of flyback transformer with the flat copper winding transformer of injection type proposed in this paper suitable for small-size and winding method of automatic type was carried out based on the simulation results using Maxwell 2D and 3D tool.

A Study on the Optimal Design of Planar Flyback Transformers suitable for Small-size and Low-profile (소형화 및 슬림형에 적합한 평면 플라이백 변압기의 최적 설계에 관한 연구)

  • Na, Hae-Joong;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.828-837
    • /
    • 2020
  • This paper presents the optimal design of planar flyback transformer suitable for small-size and low-profile of AC to DC adapter for 10W tablet. This paper also proposes the injection winding transformer of Hybrid and Drum types capable of the winding method of automatic type and the reduction of transformer size and leakage inductance(Lk) compared to the conventional mass-production flyback transformer with the winding method of manual type. In particular, the injection winding transformer of Drum type proposed in this paper is constructed in a horizontal laying of its transformer to solve the connection problem of copper plate injection winding on the secondary side of the one of Hybrid type. The primary and secondary windings of the injection winding transformer of Hybrid and Drum types used the conventional winding and the copper plate injection winding, respectively. For the injection winding transformer of Hybrid and Drum types proposed in this paper, the optimal design of planar flyback transformer suitable for small-size and low-profile was carried out using Maxwell 2D and 3D tool.

Harmonic Winding Factors and MMF Analysis for Five-phase Fractional-slot Concentrated Winding PMSM

  • Kang, Huilin;Zhou, Libing;Wang, Jin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • To enhance torque density by harmonic current injection, optimal slot/pole combinations for five-phase permanent magnet synchronous motors (PMSM) with fractional-slot concentrated windings (FSCW) are chosen. The synchronous and the third harmonic winding factors are calculated for a series of slot/pole combinations. Two five-phase PMSM, with general FSCW (GFSCW) and modular stator FSCW (MFSCW), are analyzed and compared in detail, including the stator structures, star of slots diagrams, and MMF harmonic analysis based on the winding function theory. The analytical results are verified by finite element method, the torque characteristics and phase back-EMF are also taken into considerations. Results show that the MFSCW PMSM can produce higher average torque, while characterized by more MMF harmonic contents and larger ripple torque.

Fault Diagnosis Method of Permanent Magnet Synchronous Motor for Electrical Vehicle

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.413-420
    • /
    • 2016
  • The permanent magnet synchronous motor has high efficiency driving performance and high power density output characteristics compared with other motors. In addition, it has good regenerative operation characteristics during braking and deceleration driving condition. For this reason, permanent magnet synchronous motor is generally applied as a power train motor for electrical vehicle. In permanent magnet synchronous motor, the most probable causes of fault are demagnetization of rotor's permanent magnet and short of stator winding turn. Therefore, the demagnetization fault of permanent magnet and turn fault of stator winding should be detected quickly to reduce the risk of accident and to prevent the progress of breakdown of power train system. In this paper, the fault diagnosis method using high frequency low voltage injection was suggested to diagnose the demagnetization fault of rotor permanent magnet and the turn fault of stator winding. The proposed fault diagnosis method can be used to check the faults of permanent magnet synchronous motor during system check-up process at vehicle starting and idling stop mode. The feasibility and usefulness of the proposed method were verified by the finite element analysis.

Operation Analysis of Novel UPFC without Series Injection Transformers (직렬주입변압기가 없는 새로운 UPFC의 동특성 분석)

  • 백승택;한병문
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.641-648
    • /
    • 2003
  • This paper proposes a novel UPFE based on H-bridge modules, isolated through single-phase multi-winding transformers. The dynamic performance of proposed system was analyzed by simulation with EMTDC, assuming that the UPFC is connected with the 138-kV transmission line of one-machine-infinite-bus power system. The proposed system can be directly connected to the transmission line without series injection transformers. It has flexibility in expanding the operation voltage by increasing the number of H-bridge modules.

Operation Analysis of Novel UPQC(Unified Power Quality Conditioner) without Series Injection Transformers (직렬주입변압기가 없는 새로운 UPQC(Unified Power Quality Conditioner)의 성능분석)

  • Kim H.J.;Bae B.Y.;Jon Y.S.;Han B.M.;Kim H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.251-255
    • /
    • 2003
  • This paper proposes a novel UPQC(unified power quality conditioner) based on H-bridge modules, isolated through single-phase multi-winding transformers. The dynamic performance of proposed system was analyzed by simulation with EMTDC/PSCAD, assuming that the UPQC is connected with the 22.9kV distribution line. The proposed system can be directly connected to the transmission line without series injection transformers. It has flexibility in expanding the operation voltage by increasing the number of H-bridge modules and can compensate reactive power, harmonics, voltage sag and swell, voltage unbalance. The control strategy for the proposing UPQC was derived using the instantaneous power method. The proposing UPQC has the ultimate capability of improving power quality at the point of installation on power distribution systems and can be utilized for the future distribution system.

  • PDF

Composite applications to automobiles (섬유강화 복합재료와 자동차)

  • 이상관;김병선
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.96-120
    • /
    • 1996
  • 현재 자동차용 복합재료를 생산하는데 유리한 제조방법으로는 압축성형 (Compression Molding), 액상성형(Liquid Molding), 인발성형(Pultrusion), 필라멘트 와인딩성형(Filament Winding)등이 있다. 압축성형은 현재 자동차 외장부품 성형에 널리 알려져 있는 SMC(Sheet Molding Compound)성형, 최근에 많은 연구가 되고 있는 LMPC(Low Pressure Molding Compound)성형, GMT(Glass Mat Reinforced Thermoplastics)성형 등이 있다. 액상성형은 RTM(Resin Transfer Molding)과 VARI (Vacuum Assisted Injection Molding), SRIM(Structure Reaction Injection Molding) 등이 있으며, 자동차 산업뿐만 아니라 일반 산업에서도 최근 많은 각광을 받고 있다. 그러므로 본 소고에서는 자동차용 복합재료의 제조에 널리 사용되는 성형공정에 대하여 간단히 살펴보고, 자동차 부품에 있어서의 복합재료 응용 현장과 최근 환경문제가 대두되면서 관심의 초점이 되고 있는 자동차용 복합재료 재활용 기술에 대하여 고찰하고자 한다.

  • PDF

Dynamic Performance Analysis of Unified Power Quality Conditioner with Cascaded H-Bridges (다중브리지로 구성된 UPQC(Unified Power Quality Conditioner)의 동적 성능분석)

  • Cho, Yun-Ho;Bae, Byung-Yeol;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.241-243
    • /
    • 2006
  • This paper describes experimental analysis of UPQC, which is composed of cascaded H-bridges and single-phase multi-winding transformers. The operational characteristic was analyzed through experimental works with a scaled model, and simulations with PSCAD/EMTDC. The UPQC proposed in this paper can be directly connected to the distribution line without series injection transformers. It has flexibility to expand the operation voltage by increasing the number of H-bridge modules. The analysis results can be utilized to design the actual UPQC system applicable for the actual distribution system.

  • PDF

Experimental Operation Analysis of Unified Power Flow Controller with Cascaded H-Bridge Modules (다계 H-브리지 모듈로 구성된 UPFC(Unified Power Flow Compensator)의 실험적 동작분석)

  • Baek, Seung-Taek;Bae, Byung-Yeol;han, Byung-Moon;Baek, Doo-Hyun;Jang, Byung-Hoon;Yoon, Jong-Soo;Kim, Soo-Yeol
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.389-391
    • /
    • 2005
  • This paper describes experimental analysis of UPFC, which is composed of cascaded H-bridge modules and single-phase multi-winding transformers for isolation. The operational characteristic was analyzed through experimental works with a scaled model, and simulation results with PSCAD/EMTDC. The UPFC proposed In this paper can be directly connected to the transmission line without series injection transformers. It has flexibility to expand the operation voltage by increasing the number of H-bridge modules. The analysis results can be utilized to design the actual UPFC system applicable for the transmission system.

  • PDF

Development of Inter Turn Short Fault Model of IPM Motor (IPM모터의 턴쇼트 고장모델에 관한 연구)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.305-312
    • /
    • 2015
  • In this study, inter-turn short fault models of interior permanent magnet synchronous motors (IPMSM) are developed by adding saliency modeling to surface-mounted permanent magnet motor models. The saliency model is obtained using the deformed flux models based on both fault-winding flux information and inductance variations caused by cross-flux linkages that depend on the distribution of the same phase windings. By assuming the balanced three-phase current injection, we obtain the positive and negative sequence voltages and the fault current in the positive and the negative synchronous reference frames. The output torque model is developed by adding the magnet and the reluctance torque, which are derived from the developed models. To verify the proposed IPMSM model with an inter-turn short fault, finite element method-based simulation and experimental measurement results are presented.