• Title/Summary/Keyword: Injection molding machine

Search Result 190, Processing Time 0.021 seconds

Robust Design of the Gate System for Flatness Improvement in Semi-Solid Casting Processes (반응고 주조공정에서 평면도 증대를 위한 게이트시스템의 강건설계)

  • Song, In-Ho;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Semi-solid casting(SSC) of magnesium alloys is increasingly being used to produce high quality components. This process is similar to the injection molding of plastics and is called thixomolding. Using this process, higher strength, thinner wall sections and tighter tolerances without porosity are obtained. The high strength and low weight characteristics of magnesium alloys render the high-precision fabrication of thin-walled components with large surface areas. They are widely used for the IT, auto and consumer electronics industries. However, warpage of the thin-walled sections degrade quality of the parts produced in the SCC process. To produce thin-walled magnesium alloy parts, the geometry of gating system on the quality of the finished products should be clearly studied. In this paper, to minimize warpage of the thin-walled sections, Taguchi method is applied to the optimal design of the gate geometry in the thixomolding process. Width, height, length and angle of the gating system are selected for the robust design parameters. Effectiveness of the robust design is verified through the CAE software.

Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites

  • Parhizkar, Mehran;Shelesh-Nezhad, Karim;Rezaei, Abbas
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2016
  • In an attempt to reach a balance of performances in homo-polypropylene based system, the effects of single and hybrid reinforcements inclusions comprising calcium carbonate nanoparticles (2, 4 and 6 phc) and glass fibers (10 wt.%) on the mechanical and thermal properties were investigated. Different samples were prepared by employing twin-screw extruder and injection molding machine. In morphological studies, the uniform distribution of glass fibers in PP matrix, relative adhesion between glass fibers and polymer, and existence of nanoparticles in polymer matrix were observed. $PP/CaCO_3$ (6 phc) as compared to pure PP and PP/GF had superior tensile and flexural strengths, impact resistance and deformation temperature under load (DTUL). $PP/GF/CaCO_3$ (6 phc) composite displayed comparable tensile and flexural strengths and impact resistance to neat PP, while its tensile and flexural moduli and deformation temperature under load (DTUL) were 436%, 99% and $26^{\circ}C$greater respectively. The maximum impact resistance was observed in $PP/CaCO_3$(6 phc). The highest DTUL was perceived in PP hybrid nanocomposite containing 10 wt.% glass fiber and 4 phc $CaCO_3$ nanoparticle.

Development and performance evaluation of a low-cost custom-made extensional rheometer (저비용 수제 연신레오미터 개발 및 성능 평가)

  • Sihyun Kim;Hanbyeol Pak;Jeong-Hyun Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.110-118
    • /
    • 2023
  • Characterizing the extensional rheological properties of non-Newtonian fluids is crucial in many industrial processes, such as inkjet printing, injection molding, and fiber engineering. However, educational institutions and research laboratories with budget constraints have limited access to an expensive commercial extensional rheometer. In this study, we developed a custom-made extensional rheometer using a CO2 laser cutting machine and 3D printer. Furthermore, we utilized a smartphone with a low-cost microscopic lens for achieving a high spatial resolution of images. The aqueous polyethylene-oxide (PEO) solutions and a Boger fluid were prepared to characterize their extensional properties. A transition from a visco-capillary to an elasto-capillary regime was observed clearly through the developed rheometer. The extensional relaxation time and viscosity of the aqueous PEO solutions with a zero-shear viscosity of over 300 mPa·s could be quantified in the elasto-capillary regime. The extensional properties of the solutions with relatively small zero shear viscosity could be calculated using a smartphone's slow-motion feature with increasing temporal resolution of the images.

Development of Ftheta Lens for Laser Scanning Unit (Laser Scanning Unit용 FΘ 렌즈 개발)

  • Jeong, In-Sook;Ban, Min-Sung;Son, Kwang-Eun;Lee, Byoung-Bag
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • Ftheta Lens, whose image height is proportional to its field view angle, is one of the most important parts in Laser Scanning Unit(LSU). In this paper $f{\theta}$ lens design, mold production and modification method of lens design and mold are introduced. Lens design was carried out with Zemax and Special Toric surfaces were applied for lens surfaces to minimize distortion both in main and sub scanning directions. And a high precision machine with 1nm resolution was used to fabricate lens mold cores. After injection the lens was evaluated and the difference from design was examined. This difference was compensated by modifying lens design and new lens mold cores were made according to modified lens design to obtain the quality of original design.

Fabrication of Master for a Spiral Pattern in the Order of 50nm (50nm급 불연속 나선형 패턴의 마스터 제작)

  • Oh, Seung-Hun;Choi, Doo-Sun;Je, Tae-Jin;Jeong, Myung-Yung;Yoo, Yeong-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.134-139
    • /
    • 2008
  • A spirally arrayed nano-pattern is designed as a model pattern for the next generation optical storage media. The pattern consists off types of embossed rectangular dot, which are 50nm, 100nm, 150nm and 200nm in length and 50nm in width. The height of the dot is designed to be 50nm. The pitch of the spiral track of the pattern is 100nm. A ER(Electron resist) master for this pattern is fabricated by e-beam lithography process. The ER is first spin-coated to be 50nm thick on a Si wafer and then the model pattern is written on the coated ER layer by e-beam. After developing this pattern written wafer in the solution, a ER pattern master is fabricated. The most conventional e-beam machine can write patterns in orthogonal way, so we made our own pattern generator which can write the pattern in circular or spiral way. This program generates the patterns to be compatible with the e-beam machine from Raith(Raith 150). To fabricate 50nm pattern master precisely, a series of experiments were done including the design compensation for the pattern size, optimization of the dose, acceleration voltage, aperture size and developing. Through these experiments, we conclude that the higher accelerating voltages and smaller aperture size are better for mastering the nano pattern which is in order of 50nm. With the optimized e-beam lithography process, a spiral arrayed 50nm pattern master adopting PMMA resist was fabricated to have dimensional accuracy over 95% compared to the designed. Using this pattern master, a metal pattern stamp will be fabricated by Ni electro plating for injection molding of the patterned plastic substrate.

Development of Mold for Coupling Parts for Drum Washing Machine (드럼세탁기용 커플링 부품 다이캐스팅 금형개발)

  • Park, Jong-Nam;Noh, Seung-Hee;Lee, Dong-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.482-489
    • /
    • 2020
  • This study conducted a prototype development and evaluation by performing die-casting mold design, mold manufacturing, and injection condition optimization based on flow and solidification analysis to meet the needs of the coupling parts produced by die casting. Through flow analysis, the injection conditions suitable for 100% filling in the cavity were found to be a molten metal temperature of 670 ℃, injection speed of 1.164 m/s, and filling pressure of 6.324~18.77 MPa. In addition, solidification close to 100 % occurred in all four cavities when the solidification rate was 69.47 %. A defect inspection on the surface and inside the product revealed defects, such as poor molding and pores. In addition, the dimensions of the injected product were within the target tolerance and showed good results. Through the feedback of the results of flow and solidification analysis, it was possible to optimize the mold design, and the injection optimization conditions were confirmed to be a total cycle time of approximately 6.5 seconds. Good quality carrier parts with an average surface hardness of approximately 45 mm from the gate measured at 97.48(Hv) could be produced.

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

Gradient Structures and Surface Composition of Polypropylene/Ethylene-Propylene Rubber Blends (폴리프로필렌/에틸렌-프로필렌 고무 블렌드 경사구조 및 표면조성)

  • Kim, Seog Je;Lee, Sung-Goo;Lee, Jae Heung;Choi, Kil-Yeong
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.24-31
    • /
    • 2001
  • Polypropylenes(PP) with different melt index values were mixed with ethylene-propylene rubber(EPR) or ethylene-propylene diene monomer rubber(EPDM) and an ethylene copolymer containing carboxylic acid group in a twin screw extruder. Then test specimens were prepared from the pellets of the blends with an injection molding machine. The mechanical properties and morphology of fractured surfaces were measured. Relative peak intensities of carboxylic acid group on the specimen surface were measured with an attennuated total reflection infrared spectrometer (ATR-IR) and compared with each other. The blend specimens were found to have the gradient morphology of rubber domains in PP matrix in the core region and PP skin layer. The blends containing PP of higher melt index showed greater content of ethylene copolymer containing carboxylic acid on the surface when the relative peak intensities of ATR-IR for carboxylic acid were compared. As the melt index values were increased, the decrease tendency in mechanical propeties such as tensile strength and impact strength was more significant for PP/EPR blends than PP/EPDM blends.

  • PDF

Processing and Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Poly(butylene succinate) Blends (폴리유산/폴리부틸렌숙시네이트 블랜드의 가공 및 기계적, 열적, 형태학적 특성)

  • Kim, Dae Keun;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.14-21
    • /
    • 2014
  • In the present work, PLA/PBS blends with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) at different contents were processed by using a twin-screw extruder and an injection molding machine, and then their mechanical, thermal and morphological properties were investigated. The mechanical properties such as flexural strength, flexural modulus, tensile strength and tensile modulus and thermal properties such as melting behavior, dynamic mechanical thermal properties and thermal stability significantly depended on the contents of PLA and PBS. However, the heat deflection temperature of the blends was not significantly influenced by the contents of PLA and PBS. Also, the fracture surfaces of PLA/PBS blends were changed from a brittle pattern to a ductile pattern with increasing the PBS contents.

A Research on the Manufacturing Process Improvement of High-Precision Parts for Precision Guided Missile (유도무기용 소형 정밀부품 제조공법 개선에 관한 연구)

  • Kim, Kyu-Young;Seo, Jung-Hwa;Kim, Kyoung-Rok;Kim, Bo-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • The manufacturing processes of high-precision parts for PGM (Precision Guided Missiles) have not been improved for decades; they still depend on machining or high-precision casting. These processes have an advantage when making small amounts of high-reliability parts in the usual case of a PGM system. In the case of a PGM system, however, which has been made for striking an extensive area, requires hundreds of bomblet units that require mass productivity. In addition, in the case of a part that is very difficult to machine, mass productivity and quality cannot be satisfied at the same time. In particular, cost reduction is an essential precondition to strengthening the export competitiveness of Korean defense articles. This study examined whether the MIM process is appropriate for manufacturing high-precision parts that require mass productivity. The optimized MIM process condition was determined after carrying out fundamental research. Comparisons of the quality of prototype parts with original parts and a functional test of a fuse that had been made with MIM parts highlighted the application possibility of the MIM process.