• 제목/요약/키워드: Injection distance

검색결과 314건 처리시간 0.026초

EFFECT OF FUEL STRATIFICATION ON INITIAL FLAME DEVELOPMENT: PART 1-WITHOUT SWIRL

  • Ohm, I.Y.;Park, C.J.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.519-526
    • /
    • 2006
  • For investigating the effect of fuel stratification on flame propagation, initial flame development and propagation were visualized under different axially stratified states in a port injection SI engine. Stratification was controlled by the combination of the port swirl ratio and injection timing. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Firstly in this paper, the characteristics under no port-generated swirl condition, i.e. normal conventional case was studied. Under various stratified conditions, flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flames propagation. The flame stability was estimated by the weighted average of flame area and luminosity. The stability was also evaluated through the standard deviation of flame area and propagation distance, and mean absolute deviation of propagating direction. Results show that stratification state according to injection timing do not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability is closely related to the engine stability and lean misfire limit.

소형 액체로켓엔진 인젝터 분무의 분사압력 변이에 따른 미립화 특성 (Atomization Characteristics of Small LRE-Injector Spray According to Injection Pressure Variation)

  • 정훈;김진석;김정수;박정
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.125-128
    • /
    • 2008
  • 이중모드 위상도플러속도계(Dual-mode Phase Doppler Anemometry, DPDA)를 이용하여 소형 액체 로켓엔진 인젝터 분무의 미립화 특성을 고찰하였다. 분무액적의 반경방향 이동에 따른 속도, 크기, 수밀도, 부피플럭스 등을 다양한 분사압력에서 측정하여 인젝터 분무의 공간분포 특성을 규명한다. 분사 압력이 증가함에 따라 분무액적의 속도, 난류강도, 수밀도, 그리고 부피플럭스는 증가하지만, 산술평균 직경($D_{10}$)과 분무액적의 증발율에 대한 척도인 Sauter Mean Diameter($D_{32}$)로 표현되는 액적의 크기는 감소하였다. 또, 속도와 부피플럭스는 Sauter 평균직경(Sauter mean diameter, SMD)에 비례하는 것을 알 수 있었다.

  • PDF

이중모드 위상도플러 속도계측기법에 의한 소형 액체로켓엔진 인젝터 분무의 가시화 (A Visualization of the Spray from Small Liquid-rocket Engine Injector by Dual-mode Phase Doppler Anemometry)

  • 정훈;김정수;배대석;권오붕
    • 한국가시화정보학회지
    • /
    • 제8권4호
    • /
    • pp.60-65
    • /
    • 2010
  • A focus is given to the breakup behavior of spray droplets issuing from a nonimpinging-type injector. The analysis has been carried out experimentally by means of the dual-mode phase Doppler anemometry (DPDA). Spray characteristic parameters in terms of axial velocity, mean diameter, velocity fluctuation, and span (width of the size distribution) of droplets are measured down the geometric axis of a nozzle orifice and on the plane normal to the spray stream with the injection pressure variations. As the injection pressure increases, the velocity and its fluctuation become higher, whereas the droplet sizes get smaller. It is also shown that the magnitudes of those parameters are smoothed out by dispersion when the droplets move downstream as well as outwardly. The atomization process is significantly influenced by the injection pressure rather than the traveling distance in the experimental condition presented.

기포펌프의 형상 및 작동 조건에 따른 전산유동해석 (Computational Flow Analysis with Geometric and Operating Conditions of Air Lift Pump)

  • 강건한;김성초;최종욱
    • 한국가시화정보학회지
    • /
    • 제18권2호
    • /
    • pp.18-27
    • /
    • 2020
  • Air lift pump operated by buoyancy is mainly used for the continuous circulation and the purification of fluids. In this study, the computational flow analysis has been performed with the geometric and operating conditions of the air lift pump. The numerical data from the analysis have been verified by comparing with the previous experimental data. The following results are obtained which advance the efficiency of the air lift pump. As the submergence length of pipe increases and the pipe length over the water surface decreases, the non-dimensional mass flow ratio increases in both cases. When the position of the air injection hole is within the pipe, the circulation range of the surrounding fluid becomes widened with the distance between the air injection hole and the pipe inlet relatively becoming narrower. It is more efficient both when the air injection velocity is at 10 m/s and at 15 m/s, and when the diameter of the pipe with holes is doubled near the water surface. It is expected that these results can be provided as fundamental data for operating the air lift pump.

A HYDROGEN FUELLED V-8 ENGINE FOR CITY-BUS APPLICATION

  • Sierens, R.;Verhelst, S.
    • International Journal of Automotive Technology
    • /
    • 제2권2호
    • /
    • pp.39-45
    • /
    • 2001
  • Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as a renewable energy source, provides the potential for a sustainable development particularly in the transportation sector. Hydrogen driven vehicles reduce both local as well as global emissions. The laboratory of transporttechnology (University of Gent) converted a GM/Crusader V-8 engine for hydrogen use. Once the engine is optimised, it will be built in a low-floor midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air-fuel mixture in the inlet manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing. injection timing and duration, injection pressure) we given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), noise reduction (configuration and length of inlet pipes). The advantages and disadvantages of a power regulation only by the air to fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels and backfire-safe operation.

  • PDF

측정방법에 따른 핀틀형 가솔린 인젝터의 분무각 비교 (Comparision of Spray Angles of Pintle-Type Gasoline Injector with Different Measuring Methods)

  • 김재호;임정현;노수영;문병수;김주영;강경균
    • 한국분무공학회지
    • /
    • 제4권4호
    • /
    • pp.9-16
    • /
    • 1999
  • Spray angle, a parameter which is most commonly used to evaluate. spray distribution, is important because it affects the axial and radial distribution of the fuel. Spray angles were measured and compared for the pintle-type gasoline fuel injector with n-heptane as a test fuel with the three different measuring techniques, i.e. digital image processing, shadowgraphy and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35MPa into the room temperature and atmospheric pressure environment. In digital image processing method, the transmittance level greatly influences the spray angle with the axial distance from the injector. From the experimental results by the shadowgraphy technique, it is obvious that the spray angle vary during the injection period. The results of spray angle from the spray patternator show that there exist the different spray angles in the different areas. The spray angles increase with the increase in the injection pressure for the three measurement techniques considered in this study. The spray angle is widely different, especially in the near region from the injector, according to the measurement techniques used in this experimental work.

  • PDF

Simulation study on porosity disturbance of ultra-large-diameter jet borehole excavation based on water jet coal wetting and softening model

  • Guo, Yan L.;Liu, Hai B.;Chen, Jian;Guo, Li W.;Li, Hao M.
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.153-167
    • /
    • 2022
  • This study proposes a method to analyze the distribution of coal porosity disturbances after the excavation of ultra-large-diameter water jet boreholes using a coal wetting and softening model. The high-pressure jet is regarded as a short-term high-pressure water injection process. The water injection range is the coal softening range. The time when the reference point of the borehole wall is shocked by the high-pressure water column is equivalent to the time of high-pressure water injection of the coal wall. The influence of roadway excavation with support and borehole diameter on the ultra-large-diameter jet drilling excavation is also studied. The coal core around the borehole is used to measure the gas permeability for determining the porosity disturbance distribution of the coal in the sampling plane to verify the correctness of the simulation results. Results show that the excavation borehole is beneficial to the expansion of the roadway excavation disturbance, and the expansion distance of the roadway excavation disturbance has a quadratic relationship with the borehole diameter. Wetting and softening of the coal around the borehole wall will promote the uniform distribution of the overall porosity disturbance and reduce the amplitude of disturbance fluctuations.

154kV급 중간접속부내의 부분방전 진단을 위한 HFCT 적용 (HFCT for Diagnosing Partial Discharge in Middle Joint Box of 154kV Grade)

  • 이정수;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.214-217
    • /
    • 2008
  • To detect partial discharge of 154kV joint box, we have made experiment by using the HFCT sensor. Generally the signals which are detected in partial discharge test of underground power transmission cable are accompanied with both noises of high voltage and noises of surrounding Power cable. The most noise in near to end part of joint box is corona, beside other noises flowed from surrounding area. Partial discharge test is difficulty due to these noises. First, we test reliability on both injection of calibration signal in NJB and removal of low frequency. After that, we had analyzed frequencies by measuring signals in IJB with 300[m] distance from NJB. Also we had measured S/N ratio by using the indirected injection method of calibration signal in IJB. In this experiment, two measurement methods were difference of detection acquisition, but these had the equal frequency properties.

  • PDF

분사각 및 스월 변화에 따른 디젤분무의 특성에 관한 수치 해석 (Numerical analysis on the characteristics of disel spray for variation of injection spray angle and swirl ratio.)

  • 정훈;차경세;박찬국
    • 한국전산유체공학회지
    • /
    • 제5권3호
    • /
    • pp.1-7
    • /
    • 2000
  • In high-pressure diesel engine, the injected fuel spray impinges on the piston cavity surface due to the short distance between the injection nozzle and the cavity wall. The behavior of the impinging spray has the great influence on the dispersion of fuel, the evaporation, and the mixture formation process. In this study, the numerical simulation using the GTT code was performed to study the gas flows, the spray behaviors, and the fuel vapor distributions in the combustion of a D.I engine for variation of spray angle and swirl ratio.

  • PDF

회전하는 알루미늄 환봉의 미세입자 분사가공시 통계적 방법에 의한 분사조건에 대한 연구 (A Statistical Study on the Blasting Conditions when Micro Blasting for Rotating Aluminum Rod)

  • 권대규;왕덕현
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.135-141
    • /
    • 2017
  • An experimental study of micro blasting for a rotating aluminum rod was conducted through the statistical analysis of ANOVA to obtain the effect of blasting conditions. The rotating equipment was designed and constructed with forward and backward moving for helical blasting, but rotation was used in this study. The blasting condition factors were the type of abrasive particle, nozzle diameter, pressure, standoff distance, injection time, etc. The width of the surface, the maximum depth of the sprayed surface, and ANOVA were analyzed by statistical analysis. The results showed that the contributions of the main factors were pressure, nozzle diameter, and injection particle.