• 제목/요약/키워드: Injection Molding process

검색결과 903건 처리시간 0.032초

분말사출성형한 W-15 wt%Cu 나노복합분말의 고상소결에 미치는 잔류불순물의 영향 (Effect of Residual Impurities on Solid State Sintering of the Powder Injection Molded W-15 wt%Cu Nanocomposite Powder)

  • 윤의식;이재성;윤태식
    • 한국분말재료학회지
    • /
    • 제9권4호
    • /
    • pp.235-244
    • /
    • 2002
  • The effects of residual impurities on solid state sintering of the powder injection molded (PIMed) W-15wt%Cu nanocomposite powder were investigated. The W-Cu nanocomposite powder was produced by the mech-ano-chemical process consisting of high energy ball-milling and hydrogen reduction of W blue powder-cuO mixture. Solid state sintering of the powder compacts was conducted at $1050^{\circ}C$ for 2~10 h in hydrogen atmosphere. The den-sification of PIM specimen was slightly larger than that of PM(conventional PM specimen), being due to fast coalescence of aggregate in the PIM. The only difference between PIM and PM specimens was the amount of residual impurities. The carbon as a strong reduction agent effectively reduced residual W oxide in the PIM specimen. The $H_2O$ formed by $H_2$ reduction of oxide disintegrated W-Cu aggregates during removal process, on the contrary to this, micropore volume rapidly decreased due to coalescence of the disintegrated W-Cu aggregates during evolution of CO.It can be concluded that the higher densification was due to the earlier occurred Cu phase spreading that was induced by effective removal of residual oxides by carbon.

Fabrication of Silicon Nanotemplate for Polymer Nanolens Array

  • Cho, Si-Hyeong;Kim, Hyuk-Min;Lee, Jung-Hwan;Venkatesh, R. Prasanna;Rizwan, Muhammad;Park, Jin-Goo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • Miniaturization of lenses has been widely researched by various scientific and engineering techniques. As a result, micro scaled lens structure could be easily achieved from various fabrication techniques; nevertheless it is still challenging to make nano scaled lenses. This paper reports a novel fabrication method of silicon nanotemplate for nanolens array. The inverse structure of nanolens array was fabricated on silicon substrate by reactive ion etching (RIE) process. This technique has a flexibility to produce different tip shapes using different pattern masks. Once the silicon nano-tip array structure is well-defined using an optimized recipe, it is followed by polymer molding to duplicate nanolens array from the template. Finally, the nanostructures formed on silicon nanotemplate and polymer replica were investigated using FE-SEM and AFM measurements. The nano scaled lens can be manufactured from the same template, also using other replication techniques such as imprinting, injection molding and so on.

  • PDF

사출성형공정에서 데이터의 불균형 해소를 위한 담금질모사 (Simulated Annealing for Overcoming Data Imbalance in Mold Injection Process)

  • 이동주
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.233-239
    • /
    • 2022
  • The injection molding process is a process in which thermoplastic resin is heated and made into a fluid state, injected under pressure into the cavity of a mold, and then cooled in the mold to produce a product identical to the shape of the cavity of the mold. It is a process that enables mass production and complex shapes, and various factors such as resin temperature, mold temperature, injection speed, and pressure affect product quality. In the data collected at the manufacturing site, there is a lot of data related to good products, but there is little data related to defective products, resulting in serious data imbalance. In order to efficiently solve this data imbalance, undersampling, oversampling, and composite sampling are usally applied. In this study, oversampling techniques such as random oversampling (ROS), minority class oversampling (SMOTE), ADASYN(Adaptive Synthetic Sampling), etc., which amplify data of the minority class by the majority class, and complex sampling using both undersampling and oversampling, are applied. For composite sampling, SMOTE+ENN and SMOTE+Tomek were used. Artificial neural network techniques is used to predict product quality. Especially, MLP and RNN are applied as artificial neural network techniques, and optimization of various parameters for MLP and RNN is required. In this study, we proposed an SA technique that optimizes the choice of the sampling method, the ratio of minority classes for sampling method, the batch size and the number of hidden layer units for parameters of MLP and RNN. The existing sampling methods and the proposed SA method were compared using accuracy, precision, recall, and F1 Score to prove the superiority of the proposed method.

다관능기를 도입한 아이오노머 필름의 기체투과 특성 (Permeation Property of Ionomer Film with New Multifunctional Ionic Site)

  • 이보미;정삼봉;남상용
    • 한국재료학회지
    • /
    • 제22권5호
    • /
    • pp.227-236
    • /
    • 2012
  • Ionomer is a thermoplastic that is composed of covalent bonds and ionic bonds. It is possible to use this material in processes such as injection molding or extrusion molding due to the material's high oil resistance, weatherproof characteristics, and shock resistance. In this study, a new ionomer having a multifunctional group was prepared by a stepwise neutralization system with the addition of acidic and salt additives. In step I, to increase the contents of the multifunctional group and the acid degree in ethylene acrylic acid (EAA), MGA was added to the ionomer resin (EAA). A new ionomer was prepared via the traditional preparation method of the ionic cross-linking process. In step II, metal salt was added to the mixture of EAA and MGA. The extrusion process was performed using a twin extruder (L/D = 40, size : ${\varphi}30$). Ionomer film was prepared for evaluation of gas permeability by using the compression molding process. The degree of neutralized and ionic cross-linked new ionomer was confirmed by FT-IR and XRD analysis. In order to estimate the neutralization of the new ionomer film, various properties such as gas permeation and mechanical properties were measured. The physical strength and anti-scratch property of the new ionomer were improved with increase of the neutralization degree. The gas barrier property of the new ionomer was improved through the introduction of an ionic site. Also, the ionic degree of cross-linking and gas barrier property of the ionomer membrane prepared by stepwise neutralization were increased.

대면적 박판 스탬퍼 정밀 가공을 위한 연구 (A Study on the Precision Processing of Thin Stamper with Global Area)

  • 최두선;제태진;서승호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.632-635
    • /
    • 2003
  • As a process technology of nano pattern with a new conception for economic and practical technology of alternative nano process. process technologies such as Embossing, Imprinting. Molding and Inking are beginning to make its appearance. Among these alternative processes, nano mold process is a process that is of benefit to mass production and keeps excellency of reproduction and high quality of parts. In this study, we experienced micro precision machining technology of nano stamper for the injection mold of optical disk with big capacity. Especially, Flatness and uniformity are important for nano stamper with global area, for the purpose of developing polishing technology of micro precision of Back polishing only being used for nano stamper, we carried out a basic study to secure flatness standards

  • PDF

자동차 암레스트의 인몰드코팅에 관한 실험적 연구 (An Experimental Study of In-Mold Coating of Automotive Armrests)

  • 박종락;이호상
    • 대한기계학회논문집A
    • /
    • 제39권7호
    • /
    • pp.687-692
    • /
    • 2015
  • 자동차 암레스트의 사출성형과 코팅을 동시에 구현하기 위하여 인몰드 코팅 금형을 설계하였다. 개발된 금형은 하나의 코어와 두개의 캐비티를 포함하고 있으며, 캐비티는 기재 캐비티와 코팅 캐비티로 이루어진다. 코어는 가동측 형판에 부착되었으며, 두개의 캐비티는 고정측 형판에서 슬라이딩하는 평판위에 설치되었다. 2 단계 공정으로 이루어지며 가장 먼저 사출성형된 제품은 슬라이딩 평판에 의하여 2 번째 캐비티로 전달되었다. 기재에 적용된 소재는 PC/ABS 이며, 코팅제로는 2 액형 폴리우레탄이 사용되었다. 코팅제의 토출유량을 변경하면서 실험을 수행하였으며, 주제와 경화제의 믹싱특성을 고찰하였다. 토출유량이 증가함에 따라 믹싱이 더욱 향상되었으며, 주입된 코팅제의 중량이 증가할수록 기재 표면에 발생하는 기포가 감소하였다.

분말 사출성형법으로 제조된 T42 고속도 공구강의 소결거동 (A Study on the Sintering Behavior of T42 High Speed Steel by Powder Injection Molding (PIM) Process)

  • 박동욱;김혜성;권영삼;조권구;임수근;안인섭
    • 한국분말재료학회지
    • /
    • 제19권2호
    • /
    • pp.117-121
    • /
    • 2012
  • Tool steels serve a large range of applications including hot and cold workings of metals and injection mouldings of plastics or light alloys. The high speed steels (HSS) are specifically used as cutting tools and wear parts because it has high strength, wear resistance and hardness along with appreciable toughness and fatigue resistance. From the view of HSS microstructure, it can be described as metallic matrix composites formed by a ferrous with a dispersion of hard and wear resistant carbides. The experimental specimens were manufactured using the PIM with T42 powders (50~80 vol.%) and polymer (20~50 vol.%). The green parts were debinded in n-hexane solution at $60^{\circ}C$ for 8 hours and thermal debinded at an $N_2-H_2$ mixed gas atmosphere for 8 hours. Specimens were sintered in high vacuum ($10^{-5}$ Torr) and various temperatures.

국부 금형가열에 조건에 따른 사출성형품 웰드라인의 강도 고찰 (Investigation of Weldline Strength with Various Heating Conditions)

  • 박근;손동휘;서영수
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.105-112
    • /
    • 2010
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. The weldlines are unavoidable in the cases of presence of holes or inserts, multi-gated delivery systems, significant thickness change, etc. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

사출금형 냉각시스템 최적화를 위한 설계변수의 감소 방법 연구 (A study on the reduction of design variables for injection mold cooling system optimization)

  • 최재혁;태준성;이병옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.361-364
    • /
    • 2009
  • The cooling system optimization for injection molds was studied with a response surface method in the previous research. It took so much time to find an optimum solution for a large product due to an extensive amount of calculation time for the CAE analysis. In order to use the optimization technique in the actual design process, the calculation time should be much reduced. In this study, we tried to reduce the number of design variables with the concept of the close relationship between the depth and the distance of cooling channels. The optimum ratio of the distance to the depth of cooling channels for a 2-dimensional problem was 2.0 so that the optimum ratio was again sought out for 4 industrial products. The major cooling effect of the injection molds for large products rely on baffle tubes. The optimum ratio of the distance to the depth for baffle tubes was 2.0 for the large products. The result enables us to reduce the number of the design variables by half in the cooling system optimization problem.

  • PDF

고무 인젝션 방법을 이용한 플렉시블 씰 제작 (The Flexible Seal Fabrication utilizing a rubber Injection Method)

  • 김병훈;권태훈;조인현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.707-710
    • /
    • 2010
  • KSLV-I 킥모터 노즐 개발에 있어서 가장 중요한 개발품은 노즐 구동에 필요한 플렉시블 씰 개발이다. 특히 플렉시블 씰 제작 기술의 확보는 킥 모터 노즐 개발에 있어서 핵심 개발 사항 중에 하나였다. 킥모터 플렉시블 씰 제작에 사용된 방법은 금형에 순서대로 배열된 보강재 사이에 고무를 주입하는 인젝션 방식을 사용하였다. 플렉시블 씰 제작을 통해 금형 설계 기술, 고무 인젝션 방법, 성형 공정을 확립하였다. 제작된 플렉시블 씰은 X-Ray 검사를 통해 내부 접착 상태 및 보강재/고무 배열 상태를 확인하였다.

  • PDF