• Title/Summary/Keyword: Injection Molding

Search Result 1,563, Processing Time 0.026 seconds

A Study on the Analysis of Injection Molding of F-theta Lens (에프세타 렌즈의 사출 성형 해석에 관한 연구)

  • Park, Yong-Woo;Moon, Sung-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this study, we investigate the injection molding of f-theta lens, an important element of the laser scanning unit of laser printers and scanning systems. The f-theta lens is an aspherical plastic lens that must be molded with a precision of seconds. An injection molding method is often used for mass producing aspherical plastic lenses at a low cost. In the injection molding process, costs related to forming and injection are included. Therefore, in this study, to determine the shrinkage and deformation of injection molded f-theta lens, we predict the pressure and temperature distributions. Further, based on the analysis of the predictions, we maximize the design efficiency and verify the cost and development period reduction.

A study on CAE and injection molding of automotive thick-walled light guide with micro-optical patterns (마이크로 광학 패턴이 있는 차량용 후육 라이트 가이드의 CAE 및 사출성형에 관한 기초연구)

  • Dong-Won Lee;Jong-Su Kim;Hyeon-Hwa Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2023
  • In this study, basic research was conducted on manufacturing technology of thick-walled light guide a component that controls the light source of automobile lamps. As a preliminary study for manufacturing the final injection molded parts, a model for analyzing the influence of micro patterns on light guides is presented. The optical characteristics of the light guide were analyzed according to the change of the curvature radius of the micro-optical pattern, and the injection molding characteristics of the light guide according to the change of injection molding conditions were analytically evaluated. It was confirmed that the luminance uniformity improves as the R value decreases for changes in the micro-pattern R value, but it was confirmed that there are technical limitations in actual injection mold core processing and high-replication injection molding. Injection molding analysis showed that cooling channel design is very important compared to general injection molding due to thick-wall characteristics and thickness variation. It was also confirmed that the cooling channel has a great influence on the cycle time and birefringence result due to residual stress. As a result of analyzing the influence of filling time, holding condition, and cooling on shrinkage, it was found that the cooling water temperature has a significant effect on the shrinkage of ultra-fine light guide parts, and the holding condition also has a significant effect.

A Study of the Effects of Injection Conditions on Aberration Change of Aspherical Plastic Pick-up Lens (플라스틱 비구면 픽업 렌즈의 사출조건에 대한 수차변화 연구)

  • 현동훈;이승준;이승수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.70-75
    • /
    • 2004
  • In this study, the pattern of lens aberration was studied at different injection molding conditions such as injection speed, holding pressure, holding pressure time, mold temperature and cylinder temperature and, then, the results were analyzed with a laser interferometer. It was demonstrated that optimal condition of lens aberration could be achieved by adjustment of injection molding conditions.

  • PDF

A study of structural analysis for plastic parts considering injection molding effects (성형효과를 고려한 플라스틱 사출품의 구조해석)

  • 박상현;김용환;김선우;이시호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.217-220
    • /
    • 2003
  • Due to the lighter weight and the higher freedom of design than metals plastics have been spot lighted in a wide number of applications. In the making plastic parts injection-molding process is one of the most general methods. During the injection molding process, filling-packing-cooling process, plastics have exposed to several external stresses and then plastic parts injected have molding effects which are known as anisotropic properties, orientation, and residual stress. Those molding effects are often shown as unexpected phenomena which are warpage, strength decrease, stiffness reduction, etc. In case of glass fiber filed plastics these effects are more significant than the ufilled ones. Therefore the molding effects have to be considered in the parts design using glass fiber reinforced plastics. We have developed the interface program in order to consider the molding effects in structural analyses of plastic parts using Heirarchical structural searching and layer handling in direction of thickness algorithm. The advantages of this program are the freedom of FE mesh between molding and structural analysis, the variable layer to the thickness direction of parts and the conveniences of data transferring and checking

  • PDF

Introduction to Plastics Processing and Its Research Trend (플라스틱 성형법의 개요와 연구동향의 고찰)

  • 류민영
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.651-667
    • /
    • 2002
  • Overview of plastics processing is described and the research trend of the processing is also noted. The main manufacturing processes in the plastics industry are injection molding, blow molding, compression molding, transfer molding, extrusion and thermoforming. The principles of those processes have been discussed and molds for shaping operation have been mentioned. References for each process have also been presented.

A Study on Sink Marks in Injection Molding of Boss Parts (보스부분 사출성형의 싱크마크 발생에 관한 연구)

  • Kim, Hyun-Pil;Kim, Yong-Jo
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • Supplementary features in injection molded products, which are boss, rib and snap fit, are mainly located in the products. These features might make molding flow improper in injection processing and consequently give rise to some of molding troubles such as short shot and hesitation. The sink mark on boss parts is generated by the volumetric shrinkage that is caused by both the molding thickness and the closed boss height. The volumetric shrinkage is affected by packing pressure and its amount tends to decrease by increasing the packing pressure. The packing pressure can therefore increase flow rate to a boss part and causes the sink mark depth to increase. As the molding thickness and the closed boss height in the boss part can increase the part volume, these may yield bad solidifying and also extend the molding cycle. In this paper, both the injection molding test and the flow analysis were carried out to investigate the effect of sink marks generated in the boss part of injection molded products.

  • PDF

A Study on the Jetting Phenomena in Injection Molding Process (사출성형 공정에서 젯팅 현상에 관한 고찰)

  • Lyu Min-Young
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.125-131
    • /
    • 2002
  • Surface defects in injection molded parts are due to the unsteady flow of polymer melt which are related to the geometries of cavity and gate, the operational conditions of injection and the rheological properties of polymer. In this study we have examined jetting phenomena in injection molding process for three kinds of PCs which have different molecular weight and structure, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to die swell. This means that the jetting is strongly affected by the elastic property rather than the viscous property in viscoelastic characteristics of molten polymer. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mold design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and associated surface defects regardless of magnitude of elastic property. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF

Development and evaluation of edge devices for injection molding monitoring (사출성형공정 모니터링용 엣지 디바이스 개발 및 평가)

  • Kim, Jong-Sun;Lee, Jun-Han
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.25-39
    • /
    • 2020
  • In this study, an edge device that monitors the injection molding process by measuring the mold vibration(acceleration) signal and the mold surface temperature was developed and evaluated its performance. During injection molding, signals of the injection start, V/P switchover, and packing end sections were obtained through the measurement of the mold vibration and the injection time and packing time were calculated by using the difference between the times of the sections. Then, the mold closed and mold open signals were obtained using a magnetic hall sensor, and cycle time was calculated by using the time difference between the mold closed time each process. As a result of evaluating the performance by comparing the process data monitored by the edge device with the shot data recorded on the injection molding machine, the cycle time, injection time, and packing time showed very small error of 0.70±0.38%, 1.40±1.17%, and 0.69±0.82%, respectively, and the values close to the actual were monitored and the accuracy and reliability of the edge device were confirmed. In addition, it was confirmed that the mold surface temperature measured by the edge device was similar to the actual mold surface temperature.

A Study on Injection Condition Optimization and Deformation Improvement using Taguchi Design of Experiments (다구찌 실험계획법을 이용한 사출 조건 최적화와 변형 개선에 대한 연구)

  • Young-Tae Yu;Sung-Min Mun;Sung-Young Jun;Kyoung-A Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2023
  • In this study, we conducted a study on the optimization of injection molding conditions to minimize deformation of plastic product. The charging management system housing of the vehicle was selected as the research subject. Melting temperature, cooling temperature, packing time, and packing pressure were selected as the main factors expected to affect the deformation of molded products. Each main factor was divided into 5 levels. Optimization of injection molding conditions to minimize deformation was performed using the Taguchi Method. We performed an analysis of variance (ANOVA) to identify significant factors affecting the deformation of plastic product. In order to select injection molding conditions that minimize deformation of plastic products, injection molding analysis was additionally performed for insignificant factors. We then compared the deformation of the molded part before and after optimization. As a result of comparing the injection analysis results of the basic conditions and the injection analysis results of the optimal conditions, it was confirmed that the amount of deformation after optimization was improved by about 10.9%.

Construction of a Support System for Determining the Condition of Injection Molding (사출성형 조건 설정 지원시스템 구축)

  • Yi Il-Lang;Kim Bo-Hyun;Baek Jae-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.68-77
    • /
    • 2005
  • The set-up of an injection molding process is a ye complicated and time-consuming job because it is required to well determine a lot of variables closely related to products. Thus, the productivity of the set-up process mainly depends on operators' expertise and know-how. To solve the problem mentioned before, this research constructs a support system which helps operators determining the condition of the injection molding easily and systematically. The construction of the support system consists of the following four steps: 1) to determine the control variables which affect the target defect types, 2) to design and implement UI(user interface) using a scenario of set-up process, 3) to design and implement the search algorithms for the initial and optima] condition, and 4) to construct the embedded system which integrates the support system with the operating system of a plastic injection molding machine. The test experiments of some typical products are performed using the embedded system to verify the validity of the support system.