• Title/Summary/Keyword: Initial stress condition

Search Result 253, Processing Time 0.029 seconds

Enhancement of Dimensional Stability of Compressed Open Cell Rigid Polyurethane Foams by Thermo-Mechanical Treatment

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.30-34
    • /
    • 2015
  • Thermo-mechanical treatment process of a compressed open-cell rigid polyurethane foam (OC-RPUF), which was fabricated for the vacuum insulation panel (VIP), was studied to obtain an optimum condition for the dimensional stability by the relaxation of compressive stress. Thermo-mechanical deformation of the sample OC-RPUF was shown to occur from about $120^{\circ}C$. Yield stress of 0.36 MPa was shown at about 10% yield strain. And, densification of the foam started to occur from 75% compressive strain and could be continued up to max. 90%. Compression set of the sample restored after initial compression to 90% at room temperature was ca. 82%. Though the expansion occurred to about twice of the originally compressed thickness in case of temperature rise to $130^{\circ}C$, it could be overcome and the dimensional stability could be maintained if the constant load of 0.3 MPa was applied. As the result, a thermo-mechanical treatment process, i.e, annealing process at temperature of $130{\sim}140^{\circ}C$ for about 20 min as is the maximum compressed state at room temperature, should be required for dimensional stability as an optimum condition for the use of VIP core material.

Structural Behavior of the Cylinder Cover Stud of Marine Diesel Engine (박용엔진 실린더 커버 스터드의 구조거동 분석)

  • Kim, Byung-Joo;Lee, Jae-Ohk;Park, Jin-Soo;Kim, Se-Lak
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.267-268
    • /
    • 2006
  • The cylinder cover stud of low-speed marine diesel engine is more than just a stud. It is a large structural element occasionally weighing over 200 kg used for assembling the combustion chamber components. Therefore, to understand the structural behavior of the stud and design it safely is quite important considering a catastrophic failure which can be arisen from an inadequate use of it. In this paper, the analysis results of the structural behavior of the stud is introduced. Strain measurement results compared with FE analysis results are summarized. The results showed that 1) the stud stress increased with engine operating load, 2) the maximum stress amplitude was about 10 MPa which is far smaller than the stud's fatigue strength of 61 MPa, 3) the stress ratio is higher than 0.9 and the stud's load factor is about 20 %, and 4) about 7 % of initial pressure tightening load was reduced while changing to a nut tightened condition.

  • PDF

Analysis of Characteristics of Spent Fuels on Long-Term Dry Storage Condition

  • Yoon, Suji;Park, Kwangheon;Yun, Hyungju
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.205-214
    • /
    • 2021
  • Currently, the interim storage pools of spent fuels in South Korea are expected to become saturated from 2024. It is required to prepare an operation plan of a domestic dry storage facility during a long-term period, with the researches on safety evaluation methods. This study modified the FRAPCON code to predict the spent fuel integrity evaluation such as the axial cladding temperature, the hoop stress and hydrogen distribution in dry storage. The cladding temperature in dry storage was calculated using the COBRA-SFS code with the burnup information which was calculated using the FRAPCON code. The hoop stress was calculated using the ideal gas equation with spent fuel information such as rod internal pressure. Numerical analysis method was used to calculate the degree of hydrogen diffusion according to the hydrogen concentration and temperature distribution during a dry storage period. Before 50 years of dry storage, the cladding temperature and hoop stress decreased rapidly. However, after 50 years, they decreased gradually and the cladding temperature was below 400 K. The initial temperature distribution and hydrogen concentration showed a parabolic line, but hydrogen was transferred by the hydrogen concentration and temperature gradient over time.

Design Optimization on End Coupling as a Power Transmission Component for Aluminum Hot Rolling Process (알루미늄 열간 압연공정의 동력 전달용 커플링에 대한 최적화 설계)

  • Lee, Hyun-Seung;Lee, Young-Shin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • The End Coupling is main component of the aluminum hot roll process. The End Coupling is used for transmission of rotational power with heavy-duty load. Fracture of the End Coupling cause serious economic losses because an End Coupling is a very expensive component and it takes a long time to repair it. Therefore, preventing the destruction of the End Coupling is essential for ensuring a long mechanical life cycle. In this paper, the parametric study on the End Coupling was performed in order to minimize maximum stress under operation loads. To verify the interference of spindle assembly with modified End Coupling, kinematics simulation was performed by applying the various combination type and dynamic boundary condition of the spindle assembly. The interference of optimized model was not occurred during combination process and driving process. As a result of an optimum design for life extension on End Coupling, the maximum stress of modified End Coupling was lower than that of the initial model by 26%.

Failure of Ammonia Synthesis Converter Due to Hydrogen Attack and Its On-Stream Assessment Using ToFD Method

  • Albiruni, Farabirazy;Lee, Joon-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.132-137
    • /
    • 2008
  • A failure analysis of ammonia converter which suffered hydrogen attack in two years since its initial operating time was presented. It is constructed from 2.25 Cr.1 Mo steel. Analysis showed that the failure on closing seam weld joint was due to local improper post weld heat treatment (PWHT). Improper PWHT can introduce high residual stresses in thick-walled pressure vessel. High residual stress level in weld joint is very prone to hydrogen attack for any components which are operating in hydrogen gas environment. The repair procedures based on the principle to decrease the residual stress then proposed. The repair was controlled very carefully by applying several nondestructive tests in the each stage of repair. To assure the successful of the proposed repair, after one year since repair time, high temperature ultrasonic and TOFD methods were applied on-stream to this equipment in order to evaluate its post repair condition. The two methods showed good results on the repaired area.

  • PDF

Ground Deformation involving drawdown of the water table in deep excavation - Numerical Investigation (지하굴착시 지하수저하에 따른 지반침하 - 수치해석 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.13-20
    • /
    • 2010
  • This paper presents the results of a numerical investigation on the ground deformation in deep excavation with emphasis on the groundwater lowering. Using the stress-pore pressure coupled analysis Consideration to the effect of ground excavation and groundwater interaction were carried out and a series of two-dimensional finite element model was employed to perform a parametric study on a wide range of soil profile and initial ground water table condition.

  • PDF

Statistic Pattern Analysis of HFPD According to Applied Stress (인가 스트레스에 따른 HFPD의 통계적 패턴해석)

  • Kim, Duck-Keun;Lee, Eun-Suk;Jung, Young-Ill;Lim, Jang-Seub;Kim, Tae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.18-22
    • /
    • 2000
  • The partial discharge testing is widely used in insulation property measurement because it gives low stress to high voltage equipment which is undertaken tests. Therefore it is very useful method compare to previous destructive methods and effective diagnosis method in power transformer that requires live-line diagnosis. But partial discharges have very complex characteristics of discharge pattern so it is required continuous research to development of precise analysis method. In recent, the study of partial discharge is carrying out discover of initial defect of power equipment through condition diagnosis and system development of degradation diagnosis using HFPD(High Frequency Partial Discharge) detection. In this study, simulated transformer is manufactured and HFPD occurred from transformer is measured with broad band antenna in real time, the degradation grade of transformer is analyzed through produced patterns in simulated transformer according to applied voltages.

  • PDF

Elastic Wave Velocity of Jumunjin Sand Influenced by Saturation, Void Ratio and Stress (포화도, 간극비 및 응력에 따른 주문진사의 탄성파 속도)

  • Lee, Jung-Hwoon;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.101-106
    • /
    • 2014
  • The penetration testing provides 1 dimensional profiles of properties applicable to limited investigation areas, although N-value has been linked to a wide range of geotechnical design parameters based on empirical correlations. The nondestructive test using elastic waves is able to produce 2 or 3 dimensional property maps by inversion process with high efficiency in time and cost. As both N-value and elastic wave velocities share common dominant factors that include void ratio, degree of saturation, and in-situ effective stress, the correlation between the two properties has been empirically proposed by previous studies to assess engineering properties. This study presents the experimentally measured elastic wave velocities of Jumunjin sands under at-rest lateral displacement condition with varying the initial void ratio and degree of saturation. Results show that the stress condition predominantly influences the wave velocities whereas void ratio and saturation determine the stress-velocity tendency. The correlation among the dominant factors is proposed by multiple regression analysis with the discussion of relative impacts on parameters.

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Effect of Processing Condition of Texturing M/C on the Physical Properties of Textured Polyester Filament (폴리에스테르 필라멘트의 텍스쳐링 공정조건이 사물성에 미치는 영향)

  • 김승진;안병훈;이민수
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.18-23
    • /
    • 1999
  • PET POY(pre-oriented-yam) were treated by false twister to high bulky. False twister have many processing parameters velocity ratio(VR), belt cross angle$(\theta)$, 1st heater temp. and K(twisting tension/untwisting tension). we analyzed the effect of properties of textured polyester yam on processing condition. Initial modulus, thermal stress, No. of snarl is decreased by 1st heater. In VR=1.97, Dry and wet shrinkage is increased but is decreased by 1st heater in VR=1.564. K/S and cristallinity tend to increase by decreasing VR.

  • PDF