DOI QR코드

DOI QR Code

Elastic Wave Velocity of Jumunjin Sand Influenced by Saturation, Void Ratio and Stress

포화도, 간극비 및 응력에 따른 주문진사의 탄성파 속도

  • Lee, Jung-Hwoon (Dept. of Civil and Environmental Engrg., Yonsei Univ.) ;
  • Yun, Tae-Sup (Dept. of Civil and Environmental Engrg., Yonsei Univ.)
  • 이정훈 (연세대학교 사회환경시스템공학부) ;
  • 윤태섭 (연세대학교 사회환경시스템공학부)
  • Received : 2014.04.14
  • Accepted : 2014.04.18
  • Published : 2014.04.30

Abstract

The penetration testing provides 1 dimensional profiles of properties applicable to limited investigation areas, although N-value has been linked to a wide range of geotechnical design parameters based on empirical correlations. The nondestructive test using elastic waves is able to produce 2 or 3 dimensional property maps by inversion process with high efficiency in time and cost. As both N-value and elastic wave velocities share common dominant factors that include void ratio, degree of saturation, and in-situ effective stress, the correlation between the two properties has been empirically proposed by previous studies to assess engineering properties. This study presents the experimentally measured elastic wave velocities of Jumunjin sands under at-rest lateral displacement condition with varying the initial void ratio and degree of saturation. Results show that the stress condition predominantly influences the wave velocities whereas void ratio and saturation determine the stress-velocity tendency. The correlation among the dominant factors is proposed by multiple regression analysis with the discussion of relative impacts on parameters.

관입시험은 한정된 범위에서 1차원적 정보를 얻을 수 있으나, N치는 다양한 지반설계정수와 실험적으로 연관되어 있다. 탄성파를 이용한 비파괴 검사는 역산 과정을 통해 비용 및 시간에 효율적으로 2차원 및 3차원 물성에 대한 지도를 얻을 수 있으며, N치와 탄성파 속도는 간극비, 포화도, 유효응력 등에 의해 좌우된다. 따라서 N치와 탄성파 속도간의 경험적 관계들이 제안되어 왔다. 본 연구는 다양한 간극비와 포화도를 갖는 주문진사에 대해 정지토압조건에서 탄성파를 실험적으로 측정하였다. 그 결과 하중 조건이 간극비 및 포화도에 비하여 가장 영향을 주는 요소로 나타났으며, 간극비와 포화도는 응력-속도 관계의 경향에 영향을 주었다. 각 영향인자간의 관계를 다중회귀분석을 통해 상관식으로 나타내었다.

Keywords

References

  1. Ayres, A. and Theilen F. (1999), Relationship between P and S wave velocities and geological properties of near surface sediments of the continental slope of the Barents Sea, Geophysical Prospecting, Vol.47, No.4, pp.431-441. https://doi.org/10.1046/j.1365-2478.1999.00129.x
  2. Cho, G. C. and Santamarina, J.C. (2001), Unsaturated particulate Materials-Particle Level Studies, ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.1, pp.84-96. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(84)
  3. Han, D. and Nur, A. (1986), The effects of porosity and clay content on wave velocities in sandstones, Geophysics, Vol.51, No.11, pp.2093-2107. https://doi.org/10.1190/1.1442062
  4. Hardin, B. and Richart Jr, F. (1963), Elastic wave velocities in granular soils, Journal of Soil Mechanics & Foundation Div, Vol. 89, Proc. Paper 3407, pp.33-65.
  5. Hasancebi, N. and Ulusay, R. (2007), Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments, Bulletin of Engineering Geology and the Environment, Vol.66, No.2, pp.203-213. https://doi.org/10.1007/s10064-006-0063-0
  6. Inazaki, T. (2006), Relationship between S-wave velocities and geotechnical properties of alluvial sediments, SAGEEP2006, Environment and Engineering Geophysical Society, pp.1296.
  7. Ohta, Y. and Goto, N. (1978), Empirical shear wave velocity equations in terms of characteristic soil indexes, Earthquake engineering & structural dynamics, Vol.6, No.2, pp.167-187. https://doi.org/10.1002/eqe.4290060205
  8. Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001), Soils and Waves: Particulate materials behavior, characterization and process monitoring, Wiley, New York.
  9. Tosaya, C. A. (1982), Acoustical properties of clay-dearing rocks, Ph.D thesis, Stanford University.
  10. Woods, R. (1991), Soil properties for shear wave propagation, Shear Wave in Marine Sediments, pp.29-39.