• 제목/요약/키워드: Initial spray

검색결과 214건 처리시간 0.027초

2유체 분무 액적의 거동에 관한 실험 및 수치 해석적 연구 (Experimental and Numerical Study on the Air-assist Atomizer Spray Droplets)

  • 김동일;오상헌
    • 한국분무공학회지
    • /
    • 제3권4호
    • /
    • pp.65-76
    • /
    • 1998
  • An experimental and numerical study of a spray flow is performed to investigate the spray characteristics using an air-assisted atomizer. A Partical Dynamic Analyzer(PDA) is used to measure SMD, dmp velocity, and drop number density whose the initial conditions have considerable effect on the numerical results. The measured experimental data have been used to asses the accuracy of model predictions. Numerical investigation is made with the Eulerian - Lagrangian formulism. Turbulent dispersion effects using a Monte-Carlo method, turbulent modulation effect and entrainment of air are also numerically simulated. Results show that the numerical predictions of SSF(Stochastic Separated Flow) analysis yielded reasonable agreement with the experimental data. However, the model calculations for small drops produced the inconsistent numerical results due to the effect of surrounding air entrainment.

  • PDF

금속용사 방식공법의 경제성 평가에 관한 연구 (A Study on the Economic Evaluation of Thermal Spray Methods for the Corrosion Protection of Steel)

  • 정성호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.13-16
    • /
    • 2005
  • Generally, as corrosive protection processing of a steel structure, zinc galvanizing and heavy duty coating paint are applied. However, zinc galvanizing has the difficulty of restriction of a size, or on-site construction. Moreover, heavy duty coating paint has a problem with many administrative and maintenance expenses with short problem of adhesion, corrosion generating of a damage portion, and maintenance management cycle. In this study, a salt water spray test, CASS test, and the electrochemistry examination were carried out for the thermal metal spray method of construction for corrosive protection performance evaluation. Moreover, the corrosive protection life of a thermal metal spray method of construction was quantitatively calculated on the basis of this experiment. in consideration of LCC, the economical efficiency of a general corrosive protection method of construction and a thermal metal corrosive protection method of construction was compared. Consequently, although initial construction expense was estimated 16 to $30\%$ high, as for a thermal metal spray method of construction, it turns out that the administrative and maintenance expenses for 100 years became cheap 9.3 to 13 or more times.

  • PDF

저온 분사 코팅 공정에서 충돌속도에 따른 CuNiTiZr 벌크 비정질 소재의 활성화 에너지와 결정화 거동 분석 (Effects of Impact Velocity on Crystallization and Activation Energy of Cu-based Bulk Metallic Glasses in Kinetic Spray Coating)

  • 윤상훈;배규열;김정환;이창희
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, nanocrystallization of CuNiTiZr bulk metallic glass (BMG) subjecting to a kinetic spraying, dependent on impact velocity, was investigated by numerical and experimental approaches. The crystallization fraction and nucleation activation energy of initial feedstock and as-deposited coating were estimated by DSC and Kissinger method, respectively. The results of numerical modeling and experiment showed that the crystalline fraction and nucleation activation energy in BMG coatings were depended on kinetic energy of incident particle. Upon impact, the conversion of particle kinetic energy leads to not only decreasing free energy barrier but also increasing the driving force for an amorphous to crystalline phase transformation. The nanocrystallization of BMGs is associated with the strain energy delivered by a plastic deformation with a high strain rate.

잔사유 분무 연소 해석에 관한 연구 (Combustion Modeling of Vacuum Residue Fuel Sprays)

  • 최찬호;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.207-214
    • /
    • 2004
  • Extra heavy vacuum residue oil has advantage as the fuel of a power plant in reducing the cost of power generation. Numerical study is conducted by the KIVA code to understand combustion, heat transfer and flow field characteristics in the test reactor. The combustion model of pulverized coal particles is adopted as the combustion process of extra heavy oil is similar to that of coal. As an initial phase of investigation parametric study is performed with respect to SMD and spray angle of injected spray droplets.

  • PDF

광폭면 분무를 위한 2유체 노즐의 분무 특성에 관한 연구 (An Experimental Study on the Spray Characteristics by Twin-Fluid Atomizer for Wide Band Spray)

  • 이중순
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.212-219
    • /
    • 2008
  • To develop the twin-fluid atomizer having the excellent performance of painting, the spray characteristics of how a wide area can be painted efficiently by one time spraying were studied in this paper. Spray phenomena are affected by the many factors determining the spray field such as the spraying pressure of gas, the spraying pressure and viscosity of liquid paints, the opening duration of needle valve, the design dimension of nozzle, and so on. As the results of experiments, these factors affecting on spray characteristics were suggested as followings; 1) The optimum spraying pressure of gas was $0.015{\sim}0.02\;kPa$, and the appropriate spraying pressure of liquid paint was 0.01kPa, In these situations, the setting up pressures must be compensated as much as the losing amount of pressure because a decompression occurred when operating valves. 2) The duration of opening the needle valve must be sustained for $1{\sim}2$ seconds to inject gas after spraying the liquid paint. This operating of the needle valve was necessary to avoid the affect on the changing of liquid column length, and to prevent the droplet deposit at the initial time of spraying. 3) The spray tip penetration was gained form the experimental equation, and the effective spraying angle was $85^{\circ}{\pm}5^{\circ}$ just at he appropriate spraying pressure of gas. The distribution of the area sprayed had the variation in $350{\pm}50\;mm$ because of the spraying pressure of gas, the its distance from the spray tip, and the lift of the needle valve.

  • PDF

대기 플라즈마 용사공정을 이용한 Fe계 벌크 비정질 금속 코팅의 초기 분말의 화학조성과 크기에 대한 미세 조직 및 마모 특성 (Microstructure and Tribological Properties along with Chemical Composition and Size of Initial Powder in Fe-based BMG Coating through APS)

  • 김정환;윤상훈;나현택;이창희
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.220-225
    • /
    • 2008
  • In this study, two kinds of Fe-based bulk metallic glasses (BMG) powder were built-up through atmospheric plasma spray (APS) technique. The microstructure of two coatings was analyzed through X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Crystallization and oxidation in coatings were affected by chemical composition and initial powder size. Then, both of them influenced the tribological property.

Al/Fe 이종금속 접합부의 부식특성 (Corrosion Assessment of Al/Fe Dissimilar Metal Joint)

  • 강민정;김철희;김준기;김동철;김종훈
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

Optimization of Pine Flavor Microencapsulation by Spray Drying

  • Lee, Shin-Jo;Lee, Yang-Bong;Hong, Ji-Hyang;Chung, Jong-Hoon;Kim, Suk-Shin;Lee, Won-Jong;Yoon, Jung-Ro
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.747-751
    • /
    • 2005
  • Microencapsulation of pine flavors was investigated to determine the optimum wall material and spray drying condition. ${\beta}$-Cyclodextrin, maltodextrin, and a 3:1 mixture of maltodextrin and gum arabic were evaluated as wall materials. The latter mixture was determined to be the best wall material based on dispersion capacity and flavor yield. Spray drying effectiveness was evaluated using a $3^3$ fraction factorial design and statistical analysis. The optimum operation condition was an inlet air temperature of $175^{\circ}C$, inlet airflow rate of $0.65\;m^3/min$ and atomizing pressure of 180 kPa, which resulted in a 93% flavor yield. The best particle shape observed by SEM was a round globular shape obtained under the above spray drying condition, whereas lower temperatures and higher inlet airflow rates resulted in initial and full collapses, respectively. The round globular shapes remained stable for at least one month.

디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구 (A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet)

  • 염정국;김민철
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

액상 첨가제 살포 방법에 의한 밀폐형 돈사에서의 분진 저감 평가 (Assessment of Dust Reduction in the Enclosed Pig Building by Spraying Method with Liquid Additives)

  • 김기연;고한종;김치년
    • 한국축산시설환경학회지
    • /
    • 제14권2호
    • /
    • pp.97-104
    • /
    • 2008
  • 본 연구는 지금까지 활용되었거나 새로이 제안된 액상 첨가제를 돈사에 살포하여 분진 농도의 경시적 변화를 관찰하여 제거 효과에 대해 객관적으로 비교 평가하기 위한 것으로 다음과 같은 결론들을 도출했다. 1. 살포 전 밀폐형 돈사내 분진 농도는 다른 연구자의 결과와 비교시 전반적으로 낮았다. 2. 온도의 경우는 살포 후 24시간까지 돈사 내부와 외부 큰 차이가 없었으나, 상대습도는 살포 후 1시간까지 증가하여 외부와 약 10% 가량의 차이를 보였다. 3. 평가대상 모든 액상 첨가제들의 살포직후 분진 평균 저감율은 살포 전 농도 대비 약 30%로 나타났다(p<0.05). 4. 살포 3시간 이후부터는 콩기름을 제외하고 다른 액상 첨가제들의 분진 농도에 대한 경시적 저감 효과가 관찰되지 않았다. 5. 평가대상 모든 액상 첨가제들 중 콩기름의 살포가 제거 효율성 및 안전성 측면 모두 돈사 분진 제어에 대해 가장 효과적인 첨가제였다.

  • PDF