• 제목/요약/키워드: Initial shear stress

검색결과 260건 처리시간 0.024초

수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究) (Mechanical and Rheological Properties of Rice Plant)

  • 허윤근;차균도
    • 농업과학연구
    • /
    • 제14권1호
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF

패각을 사용한 철근콘크리트 유공보의 공학적 특성에 관한 연구 (An Experimental Study on the Engineering Characteristics of Perforated Reinforced Concrete Beams containing Shells)

  • 구해식
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.139-146
    • /
    • 2015
  • This is an experimental study on the engineering characteristics of perforated reinforced concrete beams with shells. In the material matter of this study, the water cement ratio put 60%, the ratio of substitution of oyster shells to fine aggregate 30%. And in the structural matter, the form of opening put circle and square, the size of opening as the radius and the length of it changed from one to three times of the beam depth with a change presence and absence of reinforced steel around opening. All thirteen reinforced concrete beam tests composed one standard beam and twelve six beams with the circle and square opening were tested in shear strength under two points loading and compared and analyzed the characteristics of test beams under the same conditions one another. The results of the study showed as followed. 1) The initial crack load value of the opening test beams is similar the standard beam but the maximum load value decreased with increase in proportion of the opening size, in the square opening than the circle opening and in the absence than the presence of reinforced steel. 2) As the difference between the circle opening and the square opening beams is represented 2.17~9.8% in the maximum load value and the load capacity of the square opening suddenly decrease than it of the circle opening, it is judged because of the shortage of concrete section, the concentration of the stress in the corner of the square opening and material influence of shell substitution. 3) The failure figure such as the pattern of the crack and so on is represented brittle failure as the opening size is the bigger and the ratio of substitution is higher because of the lack material properties.

Performance of laterally loaded piles considering soil and interface parameters

  • Fatahi, Behzad;Basack, Sudip;Ryan, Patrick;Zhou, Wan-Huan;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.495-524
    • /
    • 2014
  • To investigate the soil-pile interactive performance under lateral loads, a set of laboratory model tests was conducted on remoulded test bed of soft clay and medium dense sand. Then, a simplified boundary element analysis had been carried out assuming floating pile. In case of soft clay, it has been observed that lateral loads on piles can initiate the formation of a gap, soil heave and the tension crack in the vicinity of the soil surface and the interface, whereas in medium dense sand, a semi-elliptical depression zone can develop. Comparison of test and boundary element results indicates the accuracy of the solution developed. However, in the boundary element analysis, the possible shear stresses likely to be developed at the interface are ignored in order to simplify the existing complex equations. Moreover, it is unable to capture the influence of base restraint in case of a socketed pile. To bridge up this gap and to study the influence of the initial stress state and interface parameters, a field based case-study of laterally-loaded pile in layered soil with socketed tip is explored and modelled using the finite element method. The results of the model have been verified against known field measurements from a case-study. Parametric studies have been conducted to investigate the influence of the coefficient of lateral earth pressure and the interface strength reduction factor on the results of the model.

Management of Chronic Expanding Haematoma Using Triamcinolone after Latissimus Dorsi Flap Harvesting

  • Hamada, Mariko;Shimizu, Yusuke;Aramaki-Hattori, Noriko;Kato, Tatsuya;Takada, Keiko;Aoki, Marie;Kishi, Kazuo;Nagasao, Tomohisa
    • Archives of Plastic Surgery
    • /
    • 제42권2호
    • /
    • pp.218-222
    • /
    • 2015
  • Chronic expanding haematoma (CEH) is a rare type of haematoma that enlarges slowly and continuously without coagulation. It can occur following surgery because of shear stress-induced bleeding in the scar tissue between the subcutaneous fat and fascia. We present three cases of large chronic CEH that were successfully treated with triamcinolone injections. Three female patients developed large chronic CEH at 9 months, 5 years, and 6 years, respectively, after latissimus dorsi flap harvesting for breast reconstruction. Although the condition did not improve after multiple sessions of haematoma aspiration in the first two patients, it resolved following a single 40-mg triamcinolone injection along with appropriate compression dressing for several weeks. In the third patient, triamcinolone was injected immediately after the initial aspiration of the haematoma, and the condition improved considerably. There were no side effects in any of the patients. To the best of our knowledge, this is the first report of successful treatment of large CEH using triamcinolone. Therefore, we suggest that triamcinolone injections be considered for the treatment of CEH.

플립칩용 에폭시 접착제의 저온 속경화 거동에 미치는 경화제의 영향 (Effects of Hardeners on the Low-Temperature Snap Cure Behaviors of Epoxy Adhesives for Flip Chip Bonding)

  • 최원정;유세훈;이효수;김목순;김준기
    • 한국재료학회지
    • /
    • 제22권9호
    • /
    • pp.454-458
    • /
    • 2012
  • Various adhesive materials are used in flip chip packaging for electrical interconnection and structural reinforcement. In cases of COF(chip on film) packages, low temperature bonding adhesive is currently needed for the utilization of low thermal resistance substrate films, such as PEN(polyethylene naphthalate) and PET(polyethylene terephthalate). In this study, the effects of anhydride and dihydrazide hardeners on the low-temperature snap cure behavior of epoxy based non-conductive pastes(NCPs) were investigated to reduce flip chip bonding temperature. Dynamic DSC(differential scanning calorimetry) and isothermal DEA(dielectric analysis) results showed that the curing rate of MHHPA(hexahydro-4-methylphthalic anhydride) at $160^{\circ}C$ was faster than that of ADH(adipic dihydrazide) when considering the onset and peak curing temperatures. In a die shear test performed after flip chip bonding, however, ADH-containing formulations indicated faster trends in reaching saturated bond strength values due to the post curing effect. More enhanced HAST(highly accelerated stress test) reliability could be achieved in an assembly having a higher initial bond strength and, thus, MHHPA is considered to be a more effective hardener than ADH for low temperature snap cure NCPs.

굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석 (Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading)

  • 김형구;최낙삼
    • Composites Research
    • /
    • 제18권1호
    • /
    • pp.30-37
    • /
    • 2005
  • 본 연구에서는 3점 굽힘 실험과 코어의 실제 형상을 모델링한 유한요소 시뮬레이션을 병행하여 외피층의 항복, 층간분리 코어의 전단 및 국부적 좌굴과 같은 다양한 파손모드를 고려한 하니컴 샌드위치 복합재료의 강도 특성과 변형거동을 검토하였다. 외피층과 하니컴 코어층 사이를 완전 접착한 시험편과 부분 층간분리 시험편을 대상으로 하니컴 코어의 셀 크기와 외피층 두께를 변화시켜 시험편의 굽힘 강성, 굽힘 강도. 굽힘 응력, 변형 및 파손 거동을 해석하였다. 결론적으로 하니컴 코어의 셀 크기와 외피층의 두께가 하니컴 샌드위치 복합재료의 굽힘 강성과 강도, 변형/파괴 거동에 주된 영향을 미쳤으며 코어의 셀 크기가 크고 외피층의 두께가 얇은 경우 굽힘 강도는 $30\~68\%$ 정도까지 저하됨을 알 수 있었다.

전단력을 받는 더블 앵글 접합부의 비선형 거동에 관한 해석적 연구 (An Analytical Study on the Nonlinear Behavior of Double Angle Connections Subjected to Shear)

  • 이수권;홍갑표
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.65-73
    • /
    • 2000
  • 상용 유한요소해석 프로그램인 ABAQUS(ver5.8)를 이용하여 전단력을 받는 더블앵글 접합부의 3D 해석을 수행하여 접합부의 모멘트-회전 관계곡선을 구하고 앵글과 볼트의 응력분포를 관찰한다. 해석시 주요 매개변수로는 볼트수, 게이지거리, 앵글의 두께로 하였으며 유한요소해석 결과로 구한 모멘트-회전곡선을 Richard가 제시한 예측식에 적용한 후 회귀분석을 통하여 접합부 거동을 예측하는 데 필요한 매개변수인 초기강성, 소성강성, 참조모멘트, 곡선형태변수를 구한다. 또한 매개변수들이 게이지거리, 앵글의 두께 및 볼트 수 변화에 따른 그래프를 작성하고 또한 이 그래프를 이용하여 접합부의 모멘트 및 LRFD의 접합부 분류에 따른 소성모멘트에 대한 접합부 모멘트의 비를 계산한다.

  • PDF

옹벽의 변위에 따른 정지토압에서 수동토압까지의 변화 (Passive Earth Pressure Transition Behind Retaining Walls)

  • 김홍택
    • 한국지반공학회지:지반
    • /
    • 제3권2호
    • /
    • pp.55-70
    • /
    • 1987
  • 본 연구에서는 정지토탄상태에서 수동토추상태 까지의 토압의 변화를 옹벽의 변위량에 따라 나타 내는 새로운 이론이 제시되었다. 제시된 이론은 2차원평형조건식과 Mohr-Coulomb의 파괴규준을 변 궐한 최대주응력과 최소주응력의 관계식을 바탕으로 이루어졌으며, 또한 옹벽의 변위량에 따른 흙의 내부마찰자(f)과 벽마찰각(5)의 변화를 옹벽상단에서 부터의 깊이의 함수로 나타내는 수학적 model이 개발되었다. 결과치를 수치해석적으로 구하기 위해 유한차분법이 이용되었고 또하 얻어 진 결과치를 실험치와 비교함으로써 본 연구에서 제시된 이론의 적합성이 확인되었다. 옹벽 설계와 관련된 벽마찰카의 변화가 토압에서 미치는 영향에 대해서도 아울러 고찰되었다.

  • PDF

Investigation on the performance of a new pure torsional yielding damper

  • Mahyari, Shahram Lotfi;Riahi, Hossein Tajmir;Esfahanian, Mahmoud Hashemi
    • Smart Structures and Systems
    • /
    • 제25권5호
    • /
    • pp.515-530
    • /
    • 2020
  • A new type of pure torsional yielding damper made from steel pipe is proposed and introduced. The damper uses a special mechanism to apply force and therefore applies pure torsion in the damper. Uniform distribution of the shear stress caused by pure torsion resulting in widespread yielding along pipe and consequently dissipating a large amount of energy. The behavior of the damper is investigated analytically and the governing relations are derived. To examine the performance of the proposed damper, four types of the damper are experimentally tested. The results of the tests show the behavior of the system as stable and satisfactory. The behavior characteristics include initial stiffness, yielding load, yielding deformation, and dissipated energy in a cycle of hysteretic behavior. The tests results were compared with the numerical analysis and the derived analytical relations outputs. The comparison shows an acceptable and precise approximation by the analytical outputs for estimation of the proposed damper behavior. Therefore, the relations may be applied to design the braced frame system equipped by the pure torsional yielding damper. An analytical model based on analytical relationships was developed and verified. This model can be used to simulate cyclic behavior of the proposed damper in the dynamic analysis of the structures equipped with the proposed damper. A numerical study was conducted on the performance of an assumed frame with/without proposed damper. Dynamic analysis of the assumed frames for seven earthquake records demonstrate that, equipping moment-resisting frames with the proposed dampers decreases the maximum story drift of these frames with an average reduction of about 50%.

PHC말뚝과 확대기초 연결방법에 따른 접합부 거동 (Pile-cap Connection Behavior Dependent on the Connecting Method between PHC pile and Footing)

  • 방진욱;오상진;이승수;김윤용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권3호
    • /
    • pp.25-32
    • /
    • 2016
  • 말뚝머리-확대기초 접합부는 상부구조물의 하중을 말뚝으로 전달하는 연결부분으로서 부재의 단면과 강성의 급격히 변화하는 부위이기 때문에 응력이 집중되고 작용하는 휨모멘트와 전단력이 큰 취약부분이다. 이 연구에서는 제작조건에 따른 PHC말뚝 및 합성 PHC말뚝과 확대기초 접합부의 구조성능을 평가하는데 목적이 있다. 반복가력 하중 조건하에서의 균열패턴, 하중-변위관계, 연성비, 초기 회전강성 및 에너지소산 특성을 각각 평가하였다. 접합부 초기 회전강성은 확대기초 내부로 삽입되는 말뚝삽입 깊이와 축방향철근 배근위치에 큰 영향을 받는 것으로 나타났다. 또한 접합부 강도, 연성비 및 누적 에너지소산 등의 접합부 거동은 말뚝의 종류와 축방향 철근 배근 위치에 영향을 받는 것으로 나타났다.