• Title/Summary/Keyword: Initial rock stress

Search Result 76, Processing Time 0.021 seconds

Shear Load characteristics of drilled shafts considering socket-roughness in Constant Normal Stiffness(CNS) Test (일정수직강성시험을 통한 암반근입 현장타설말뚝의 주면마찰력특성분석)

  • Jeong, Sang-Seom;Jung, Woo-Hyun;Seol, Hoon-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.489-498
    • /
    • 2005
  • In this study, the shaft resistance of drilled shafts socketed into weathered-and soft-rocks was examined by the constant normal stiffness(CNS) test. Large scale model tests were performed for different unconfined compressive strength, socket roughness, initial normal stress, and normal stiffness for identifying shear load transfer characteristics. Through comparisons with previous studies, it is found that the results by the present approach is good agreement with the general trend observed by existing empirical and analytical results.

  • PDF

Analysis of acoustic emission parameters according to failure of rock specimens (암석시편 파괴에 따른 acoustic emission 특성인자 분석)

  • Lee, Jong-Won;Oh, Tae-Min;Kim, Hyunwoo;Kim, Min-Jun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.657-673
    • /
    • 2019
  • A monitoring method based on acoustic emission (AE) sensor has been widely used to evaluate the damage of structures in underground rock. The acoustic emission signal generated from cracking in material is analyzed as various acoustic emission parameters in time and frequency domain. To investigate from initial crack generation to final failure of rock material, it is important to understand the characteristics of acoustic emission parameters according to the stress ratio and rock strength. In this study, uniaxial compression tests were performed using very strong and weak rock specimen in order to investigate the acoustic emission parameters when the failure of specimen occurred. In the results of experimental tests, the event, root-mean-square (RMS) voltage, amplitude, and absolute energy of very strong rock specimen were larger than those of the weak rock specimen with an increase of stress ratio. In addition, the acoustic emission parameters related in frequency were more affected by specification (e.g., operation and resonant frequency) of sensors than the stress ratio or rock strength. It is expected that this study may be meaningful for evaluating the damage of underground rock when the health monitoring based on the acoustic emission technique will be performed.

Thermographic analysis of failure for different rock types under uniaxial loading

  • Kirmaci, Alper;Erkayaoglu, Mustafa
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.503-512
    • /
    • 2020
  • Mining activities focus on the production of mineral resources for energy generation and raw material requirements worldwide and it is a known fact that shallow reserves become scarce. For this reason, exploration of new resources proceeds consistently to meet the increasing energy and raw material demand of industrial activities. Rock mechanics has a vital role in underground mining and surface mining. Devices and instruments used in laboratory testing to determine rock mechanics related parameters might have limited sensing capability of the failure behavior. However, methodologies such as, thermal cameras, digital speckle correlation method and acoustic emission might enable to investigate the initial crack formation in detail. Regarding this, in this study, thermographic analysis was performed to analyze the failure behaviors of different types of rock specimens during uniaxial compressive strength experiments. The energy dissipation profiles of different types of rocks were characterized by the temperature difference recorded with an infrared thermal camera during experiments. The temperature increase at the failure moment was detected as 4.45℃ and 9.58℃ for andesite and gneiss-schist specimens, respectively. Higher temperature increase was observed with respect to higher UCS value. Besides, a temperature decreases of about 0.5-0.6℃ was recorded during the experiments of the marble specimens. The temperature change on the specimen is related to release of radiation energy. As a result of the porosity tests, it was observed that increase in the porosity rate from 5.65% to 20.97% can be associated to higher radiation energy released, from 12.68 kJ to 297.18 kJ.

Calculation Method for Nominal Area of Rock Core Specimen During Direct Shear Test (암석코어시편의 절리면 직접전단시험을 위한 겉보기 면적 계산방법)

  • Kang, Hoon;Park, Jung-Wook;Park, Chan;Oh, Tae-Min;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.551-558
    • /
    • 2020
  • This note presents the calculation of nominal area for rock core specimen under direct shear testing condition. The initial nominal area was assumed as ellipsoid, and the equations for calculating the nominal area are derived. The normalized shear displacement and normalized nominal area have an identical relationship regardless of the ellipsoid shape. New testing constants and the generalized method were suggested to calculate the decrease of the nominal area. The method was applied to calculate the direct shear testing data and the changes of result were discussed.

A Study on the Estimation of Load Distribution Factors Considering Excavation Methods and Initial Stress Conditions (굴착방법과 초기지압 조건을 고려한 하중분배율의 산정 연구)

  • Park, Yeon-Jun;Ryu, Il-Hyung
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.192-204
    • /
    • 2011
  • In this study, 3-D analyses were conducted while taking every construction stage into account. Then 2-D analyses were conducted which yield the same results with the 3-D results. The crown settlement normalized by the ultimate value was compared during the process to overcome the discrepancy caused by different dimensions. When a bench or a core is left uncut to give extra support to the face and eventually the whole excavation boundary, this extra supporting effect also has to be included in the analysis. In this study, this effect is also implemented in terms of the load distribution factor. When the length of the bench is very short compared to the diameter of the tunnel in such cases as in short bench cut or in mini-bench cut, the supporting effect of the face does not disappear even after the bench is completely excavated and supported since the face is still too close to the point of interest. The 4th load distribution factor was defined to stand for the advance of the face after the completion of the excavation cycle. The 4th load distribution factor turned out to be very useful in determining the load distribution factors when a tunnel is excavated by bench cut with various bench lengths under different initial conditions.

A Study on the Stability of Deep Tunnels Considering Brittle Failure Characteristic (취성파괴특성을 고려한 심부터널의 안정성 평가기법 연구)

  • Park, Hyun-Ik;Park, Yeon-Jun;You, Kwang-Ho;Noh, Bong-Kun;Seo, Young-Ho;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.304-317
    • /
    • 2009
  • Most crystalline rocks have much higher compressive strength than tensile strength and show brittle failure. In-situ rock mass, strong enough in general sense, often fails in brittle manner when subjected to high stress exceeding strength in due of geometrically induced stress concentration or of high initial stress. Therefore, it is necessary to verify the brittle failure characteristics of rock and rock mass for proper stability assessment of underground structures excavated in great depths. In this study, damage controlled tests were conducted on biotite-granite and granitic gneiss, which are the two major crystalline rock types in Korea, to obtain the strain dependency characteristics of the cohesion and friction angle. A Cohesion-Weakening Friction-Strengthening (CWFS hereafter) model for each rock type was constructed and a series of compression tests were carried out numerically while varying confining pressures. The same tests were also conducted assuming the rock is Mohr-Coulomb material and results were compared.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project (국내 이산화탄소 지중격리저장 실증실험 후보부지의 역학적 안정성 평가 기초해석)

  • Kim, A-Ram;Kim, Hyung-Mok;Kim, Hyun-Woo;Shinn, Young-Jae
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.89-99
    • /
    • 2017
  • For a successful performance of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed to be optimized for site specific geological conditions. In this study, we built a simple 2-dimensional analysis model, based on the geology of Jang-gi basin which is one of the potential sites of domestic CCS projects. We evaluated the impact of initial stress conditions and injection rate through coupled TOUGH-FLAC simulator. From the preliminary analysis, we constructed risk scenarios with the higher potential of shear slip and performed scenario analysis. Our analysis showed that normal stress regime produced the highest potential of shear slip and stepwise increasing injection rate scenario resulted in much larger pore pressure build up and consequent higher potential of the shear slip, which was evaluated using a mobilized friction coefficient.

Effect of Confining Pressure, Temperature, and Porosity on Permeability of Daejeon Granite: Experimental Study (대전 화강암의 투수계수에 미치는 구속압, 온도, 공극률의 영향: 실험적 연구)

  • Donggil Lee;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.71-87
    • /
    • 2024
  • In deep geological disposal of high-level radioactive waste, the surrounding rock at the immediate vicinity of the deposition hole may experience localized changes in permeability due to in-situ stress at depth, swelling pressure from resaturated bentonite buffer, and the heat generated from the decay of radioactive isotopes. In this study, experimental data on changes in permeability of granite, a promising candidate rock type in South Korea, were obtained by applying various confining pressures and temperature conditions expected in the actual disposal environment. By conducting the permeability test on KURT granite specimens under three or more hydrostatic pressure conditions, the relation in which the permeability decreases exponentially as the confining pressure increases was derived. The temperature-induced changes in permeability were found to be negligible at temperatures below the expected maximum of 90℃. In addition, by establishing a relation in which the initial permeability is proportional to the power of the initial porosity, it was possible to estimate permeability value for granite with a specific porosity under a certain confining pressure.

Monitoring Result of Rock Mass Behavior during Excavation of Deep Cavern (대심도 지하 공간 굴착시의 암반거동 - 일본 SUPER KAMIOKANDE의 사례 -)

  • Lee Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.11-25
    • /
    • 2006
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000 meters, in the Kamio Mine, Japan. The excavated cavern is consisted of a cylinder of 42.4 m high and a semi elliptical dome of 15.2 m high, with a bottom diameter of 40 m. The total excavation volume is approximately $69,000\;m^3$. Because of the character as a large cavern excavation in deep underground, there is many unknown factors in rock mechanics. Based on the results of rock test and numerical analysis, the monitoring of rock mass behavior accompanying progress of construction was performed by various instruments installed in the rock mass surrounding the cavern. The monitoring data was used in the study of measures for cavern stability.