• Title/Summary/Keyword: Initial flaw

Search Result 25, Processing Time 0.027 seconds

Probabilistic Analysis of Flaw Distribution on Structure Under Cyclic Load (피로하중을 받는 구조물의 결함분포에 대한 확률론적 해석)

  • Kwak, Sang-Log;Choi, Young-Hwan;Kim, Hho-Jung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.604-609
    • /
    • 2003
  • Flaw geometries, applied stress, and material properties are major input variables for the fracture mechanics analysis. Probabilistic approach can be applied for the consideration of uncertainties within these input variables. But probabilistic analysis requires many assumptions due to the lack of initial flaw distributions data. In this study correlations are examined between initial flaw distributions and in-service flaw distributions on structures under cyclic load. For the analysis, LEFM theories and Monte Carlo simulation are applied. Result shows that in-service flaw distributions are determined by initial flaw distributions rather than fatigue crack growth rate. So initial flaw distribution can be derived from in-service flaw distributions.

  • PDF

Flaw Assessment on an Offshore Structure using Engineering Criticality Analysis (ECA 기법을 이용한 해양구조물의 결함 평가)

  • Kang, Beom-Jun;Kim, Yooil;Ryu, Cheol-Ho;Ki, Hyeok-Geun;Park, Sung-Gun;Oh, Yeong-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.435-443
    • /
    • 2015
  • Offshore structure may be considerably vulnerable to fatigue failure while initial flaw propagates under cyclic loading, so crack propagation analysis/fracture/yield assessments about initial flaw detected by NDT are necessarily required. In this paper, case studies have been conducted by flaw assessment program using engineering criticality analysis (ECA) approach. Variables such as flaw geometry, flaw size, structure geometry, dynamic stress, static stress, toughness, crack growth rate, stress concentration factor (SCF) affected by weld are considered as analysis conditions. As a result, the safety of structure was examined during fatigue loading life. Also, critical initial flaw size was calculated by sensitivity module in the developed program. The flaw assessments analysis using ECA approach can be very useful in offshore industries owing to the increasing demand on the engineering criticality analysis of potential initial flaws.

A Study on Flaw Tolerance Evaluation of a Main Rotor Actuator for Rotorcraft (회전익 항공기용 주 로터 작동기에 대한 손상허용 평가 연구)

  • Park, Juwon;Jeong, Jeongrae
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.1-6
    • /
    • 2020
  • The flaw tolerance evaluation requirement prescribed in Federal Aviation Regulation (FAR) §29.571 Amendment 55 was established in 2012. As a result, there are not many datas of flaw tolerance evaluation. This paper introduces the series of processes and evaluation methods carried out for certification based on the flaw tolerance evaluation. An initial flaws were artificially formed on the main rotor actuator and then the damage tolerance test was performed, which was twice life time of design requirements, to demonstrate that the main rotor actuator of the rotorcraft is sufficiently capable of flaw tolerance.

Yield and Fracture of Paper

  • Park, Jong-moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.57-72
    • /
    • 1999
  • Traditional theories of the tensile failure of paper have assumed that uniform strain progresses throughout the sheet until an imperfection within the structure causes a catastrophic break. The resistance to tensile elongation is assumed to be elastic , at first, throughout the structure, followed by an overall plastic yield. However, linear image strain analysis (LISA) has demonstrated that the yield in tensile loading of paper is quite non-uniform throughout the structure, Traditional theories have failed to define the flaws that trigger catastrophic failure. It was assumed that a shive or perhaps a low basis weight area filled that role. Studies of the fracture mechanics of paper have typically utilized a well-defined flaw around which yield and failure could be examined . The flaw was a simple razor cut normal to the direction of tensile loading. Such testing is labeled mode I analysis. The included fla in the paper was always normal to the tensile loading direction, never at another orientation . However, shives or low basis weight zones are likely to be at random angular orientations in the sheet. The effects of angular flaws within the tensile test were examined. The strain energy density theory and experimental work demonstrate the change in crack propagation from mode I to mode IIas the initial flaw angle of crack propagation as a function of the initial flaw angle is predicted and experimentally demonstrated.

  • PDF

Application of the Leak Before Break(LBB) Concept to a Heat Exchanger in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Lee, Yong-Son;Sul, Il-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.10-20
    • /
    • 2001
  • The leak before break(LBB) concept is difficult to apply to a structure with a thin tube that is immersed in a water environment. A heat exchanger in a nuclear power plant is such a structure. The present paper addresses an application of the LBB concept to a heat exchanger in a nuclear power plant. The minimum leaked coolant amount(approximately 37.9 liters) containing the radioactive material which can activate the radiation detector device installed in near the heat exchanger is assumed. A postulated initial flaw size that can not grow to a critical flaw size within the time period to activate the radiation detector is justified. In this case, the radiation detector can activate the warning signal caused by coolant leakage from initially postulated flaws of the heat exchanger. The nuclear plant can safely shutdown when this occurs. Since the postulated initial flaw size can not grow to the critical flaw size, the structural integrity of the heat exchanger is not impeded. Particularly the informational scenario presented in this paper discusses an actual nuclear plant.

  • PDF

Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model

  • Kim, JungHoon;Zi, Goangseup;Van, Son-Nguyen;Jeong, MinChul;Kong, JungSik;Kim, Minsung
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.443-457
    • /
    • 2011
  • The loss of strength in a structure as a result of cyclic loads over a period of life time is an important phenomenon for the life-cycle analysis. Service loads are accentuated at the areas of stress concentration, mainly at the connection of components. Structural components unavoidably are affected by defects such as surface scratches, surface roughness and weld defects of random sizes, which usually occur during the manufacturing and handling process. These defects are shown to have an important effect on the fatigue life of the structural components by promoting crack initiation sites. The value of equivalent initial flaw size (EIFS) is calculated by using the back extrapolation technique and the Paris law of fatigue crack growth from results of fatigue tests. We try to analyze the effect of EIFS distribution in a multiple site damage (MSD) specimen by using the extended finite element method (XFEM). For the analysis, fatigue tests were conducted on the centrally-cracked specimens and MSD specimens.

Probabilistic Integrity Assessment of CANDU Pressure Tube for the Consideration of Flaw Generation Time (결함발생 시점을 고려한 CANDU 압력관 결함의 확률론적 건전성평가)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.155-160
    • /
    • 2001
  • This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  • PDF

Global measures of distributive mixing and their behavior in chaotic flows

  • Tucker, Charles L.;Peters, Gerrit W.M.
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.4
    • /
    • pp.197-208
    • /
    • 2003
  • Two measures of distributive mixing are examined: the standard deviation $\sigma$ and the maximum error E, among average concentrations of finite-sized samples. Curves of E versus sample size L are easily interpreted in terms of the size and intensity of the worst flaw in the mixture. E(L) is sensitive to the size of this flaw, regardless of the overall size of the mixture. The measures are used to study distributive mixing for time-periodic flows in a rectangular cavity, using the mapping method. Globally chaotic flows display a well-defined asymptotic behavior: E and $\sigma$ decrease exponentially with time, and the curves of E(L) and $\sigma$ (L) achieve a self-similar shape. This behavior is independent of the initial configuration of the fluids. Flows with large islands do not show self-similarity, and the final mixing result is strongly dependent on the initial fluid configuration.

Evaluation of the State of Rocks in Load Steps by Low-frequency Ultrasonic Flaw Detection (저주파 결함 탐지법에 의한 하중 단계에 따른 암석 내부의 상태 평가)

  • Kang, Seong-Seung;Kim, Jongheuck;Noh, Jeongdu;Na, Tae-Yoo;Jang, Hyongdoo;Ko, Chin-Surk
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • The purpose of this study was to quantitatively evaluate the state of rocks in load steps by using the low-frequency ultrasonic flaw detection method. The initial Vp-velocities measured with a CND tester were in the order of Z-axis < X-axis < Y-axis, with 1687.5 m/s along the X-axis, 1690.7 m/s along the Y-axis, 1548.3 m/s along the Z-axis, and an average of 1642.2 m/s. The overall average of the Q vlaues, measured with a Silver Schmidt hammer, was 62.6, which corresponds to a uniaxial compressive strength of ~105 MPa. The Vp-velocity, measured with a low-frequency ultrasonic flaw detector at load steps of 50%, 60%, 70%, and 80%, typically decreases in the order of X-axis < Y-axis < Z-axis with increasing load steps. This oder contrasts with that of the initial Vp-velocities. As the load step increases the factors that reduce the Vp-velocity in the X-axis direction are more influential than those in the Y-axis or Z-axis directions. This indicates that the initial state of rocks can vary and is dependent on the stress state.

Probabilistic Evaluation of RV Integrity Under Pressurized Thermal Shock (가압열충격을 받는 원자로용기의 확률론적 건전성 평가)

  • Kim, Jong-min;Bae, Jae-hyun;Sohn, Gap-heon;Yoon, Ki-seok;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.90-95
    • /
    • 2004
  • The probabilistic fracture analysis is used to determine the effects of uncertainties involved in material properties, location and size of flaws, etc, which can not be addressed using a deterministic approach. In this paper the probabilistic fracture analysis is applied for evaluating the RV(Reactor Vessel) under PTS(Pressurised Thermal Shock). A semi-elliptical axial crack is assumed in the inside surface of RV. The selected random parameters are initial crack depth, neutron fluence, chemical composition of material (copper, nickel and phosphorous) and $RT_{NDT}$. The deterministically calculated $K_I$ and crack tip temperature are used for the probabilistic calculation. Using Monte Carlo simulation, the crack initiation probability for fixed flaw and PNNL(Pacific Northwest National Laboratory) flaw distribution is calculated. As the results show initiation probability of fixed flaw is much higher than that of PNNL distribution, the postulated crack sizes of 1/10t in this paper and 1/4t of ASME are evaluated to be very conservative.

  • PDF