Korea-Australia Rheology Journal
Vol. 15, No. 4, December 2003 pp. 197-208

Global measures of distributive mixing and their behavior in chaotic flows

Charles L. Tucker IIT* and Gerrit W. M. Peters'
Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, IL 61801 USA
'Materials Technology, Department of Mechanical Engineering, Eindhoven University of Technology
5600 MB Eindhoven, The Netherlands

(Received December 11, 2003)

Abstract

Two measures of distributive mixing are examined: the standard deviation ¢ and the maximum error E,
among average concentrations of finite-sized samples. Curves of E versus sample size L are easily inter-
preted in terms of the size and intensity of the worst flaw in the mixture. E(L) is sensitive to the size of
this flaw, regardless of the overall size of the mixture. The measures are used to study distributive mixing
for time-periodic flows in a rectangular cavity, using the mapping method. Globally chaotic flows display
a well-defined asymptotic behavior: E and ¢ decrease exponentially with time, and the curves of E(L) and
o(L) achieve a self-similar shape. This behavior is independent of the initial configuration of the fluids.
Flows with large islands do not show self-similarity, and the final mixing result is strongly dependent on

the initial fluid configuration.
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1. Introduction

In recent years, considerable attention has been focused
on chaotic flows and their mixing behavior (Ottino, 1989;
Aref and El Naschie, 1995). This field of study began from
the realization that deterministic laminar flows can create
chaotic motions (Aref, 1984), and we now understand that
globally chaotic flows provide the most effective way to
mix two fluids in a laminar flow. A variety of tools have
been developed to examine and characterize chaotic flows,
including Poincaré sections, periodic point analysis
(Meleshko and Peters, 1996), and stretching distributions
(Muzzio et al., 1991; Liu et al., 1994b). These tools pro-
vide rich insights into the nature of chaotic flows, and they
reveal much about the mechanisms that make chaotic mix-
ing so effective. However, none of these tools provides a
direct description of the distributive mixing behavior of a
given flow.

Before one can study distributive mixing, one must be
able to measure it. Danckwerts (1952) introduced the scale
and intensity of segregation, concepts that still provide the
basis for examining and characterizing mixtures. However,
Danckwerts considered only mixtures with no long-range
segregation, and in distributive mixing it is precisely the
long-range segregation we seek to eliminate. Thus, we
need a meaningful way to quantify distributive mixing in
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the presence of long-range segregation. Only when one can
answer questions like “Is A better mixed than B?” or “Is B
sufficiently well mixed for my purposes?” will it be pos-
sible to assess and compare the mixing performance of dif-
ferent flows, chaotic or regular.

The goals of this paper are to define some useful global
measures of distributive mixing, to show how they are
related to the properties of mixtures, and to use them to
explore the distributive mixing performance of some cha-
otic flows. Here, “distributive mixing” means any opera-
tion intended to create a uniform spatial arrangement of the
constituents of a mixture, and “global” indicates that the
measures characterize the entire mixture. Our exploration
of chaotic flows will be limited to passive laminar mixing,
i.e., the mixing of two fluids with identical rheology and
zero interfacial tension. However, the measures of distrib-
utive mixing are independent of the physical phenomena
used to create the mixture, and apply equally well to liquid-
liquid mixtures containing droplets, to the dispersion of
solid particles in a liquid, or to the mixing of granular sol-
ids.

The measures proposed here rely on knowing the entire
mixture pattern. For example, if we are examining a batch
mixing device, we must be able to determine the com-
position of the mixture at every point in the mixing cavity.
While such information is available in principle from
experiments - one could imagine solidifying the fluids in
situ after mixing, and then measuring a large number of
cross-sections - such experiments are seldom practical.
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However, some computational techniques do predict the
composition of the entire mixture are each time during the
mixing process (Chella and Vifals, 1996; Kruijt e al.,
2001; Galaktionov et al., 2002a). We need a way to assess
the results of such computations, and this is where the
measures proposed here will be most useful.

The paper is organized as follows. Section 2 discusses
the issue of length scales and introduces the two proposed
measures of distributive mixing. This is followed in section
3 by a brief summary of the mapping method (Kruijt et al.,
2001), which is the technique used to create the various
mixture patterns that are examined here. Section 4 exam-
ines a diverse set of mixture patterns, to see how the two
measures capture and represent different features of dis-
tributive mixing. Following this, section 5 examines the
time dependence of the measures in selected mixing flows,
including asypmtotic behavior at long times and depen-
dence on initial conditions. The paper closes with a short
discussion and summary.

2. Measures of distributive mixing

2.1. Length scales of examination

Consider the mixture patterns shown in Fig. 1. We wish
to choose some quantity that can be determined for each
pattern, to describe its quality of mixing. This quantity
should not depend on the history of the mixture or the
mechanisms by which is was created, but only on the infor-
mation present in the image. Accordingly, we defer expla-
nation of the creation of these patterns until section 3, and
focus on the information they contain.

The classical work of Danckwerts (1952) starts from the
notion of concentration at a point, a viewpoint that makes
a clear distinction between two length scales. The con-
centration at a point ¢(x) is taken to be the average con-
centration over a region that is larger than the atomic scale,
but smaller than the smallest droplet, striation, or particle in
the mixture. In this view, which is consistent with classical
continuum mechanics, the function ¢(x) fully describes a
particular mixture.

Danckwert’s two measures, scale and intensity of seg-
regation, are based on the autocorrelation function of c(x).
The use of two measures is based on a separation of length
scales: scale of segregation is only altered by advection and
deformation of the material (motions above the length
scale of a point), while intensity of segregation is only
altered by molecular diffusion (motions below the length
scale of a point). However, Danckwerts’ analysis was
focused on the short-range properties of ¢(x), and was lim-
ited to mixtures with no long-range segregation. In the
present study we wish to describe this long-range segre-
gation, separately from the local texture or microstructure
of the mixture.

This separation is achieved by introducing a second
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length scale which, for lack of a better term, will be called
the cell size. The cell size is much larger than the desired
final microstructure of the mixture, but much smaller than
the mixture's overall size. In a numerical simulation, the
cell size might be the size of the grid or mesh used to rep-
resent the entire mixture, or it might be a length scale over
which the velocity gradient is approximately constant.

Using the cell size, we can characterize the mixture on
two levels:

the macrostructure where the smallest object examined is
a cell, and the largest is the entire mixture.
the microstructure where the smallest object examined is
a continuum point, and the largest is a cell.

Most traditional measures of mixing are ways of describ-
ing microstructure, also called the morphology or texture.
Danckwerts’ scale and intesity of segregation belong to this
group, as do striation thickness (Mohr et al., 1957), area
tensors (Wetzel and Tucker, 1999), and droplet size dis-
tributions. In the present view we regard the microstructure
as a Jocal property that characterizes a region on the order
of the cell size. A specific microstructure is described by
the concentration function c(x), and all microstructural
descriptors can be extracted from this function.

In contrast, a specific macrostructure is described by cell-
average values, or coarse-grain concentrations. For dis-
tributive mixing the relevant quantity is the volume-average
concentration of a cell, C(x):

C)==] cav (1)
Veeu Veettx)

Each mixture pattern in Fig. 1 consists of an array of 120
by 200 square cells. The gray level of each cell is pro-
portional to C, with C = 0 corresponding to black and C =
1 corresponding to white. While the pointwise concen-
tration ¢ can differ from one or zero only through the
action of molecular diffusion, fluid motion can make 0 < C
< 1, whenever a cell contains both black and white fluid.
Values of C are exactly the type of information that is
available from direct numerical simulations of mixing. In
principle one could compute C(x) as a continuous function
of x, but in practice one may have values only for discrete
cells. From these values we wish to extract measures that
describe the important features of the macrostructure.

The complete characterization of any mixture must
include measures of both macroscopic and microscopic
mixing. In another publication we have described a model
that predicts mixing behavior at both scales (Galaktionov et
al., 2002b). The remainder of this discussion will focus on
macroscopic, or distributive, mixing.

2.2. Proposed measures
The purpose of distributive mixing is to create a uniform
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macrostructure. One might simply say that we want to
make C = ¢ for all cells, where ¢ is the average concen-
tration for the entire mixture. However, this would tie the
mixing measure to the cell size, which might well differ
from simulation to simulation, and will certainly change its
physical size if we scale up the mixer.

To handle this scaling issue we introduce an averaging
volume V,,,, whose size is characterized by a length L. The
first step in assessing a mixture is to calculate the average
concentration for each averaging volume. We denote the
average concentration for the i averaging volume V; by
(C); Thus,

(C)=g—fCav @

avg V;

Since the (C),’s are computed from the C’s, we must have
Vavg 2 V. Indeed, one cannot determine information on
any scale smaller than the cell size when the only data
available are the cell values of C.

Once the averaging volume has been chosen and the (C),
values computed, the mixture is characterized by the sta-
tistical properties of (C). A perfectly distributed mixture is
defined as one in which (C); = ¢ for all i. Appropriate mea-
sures of distributive mixing should then describe how far
the (C),’s deviate from c. A traditional measure is the sam-
ple standard deviation,

_ LYoy
o(L) = |13 (C)=0) 3)
i=1

We write ¢ as a function of L, since its value for any mix-
ture will depend on the size (and shape) of the averaging
volume.

While o is a robust statistic that draws information from
every averaging volume, it is not sensitive to the situation
in which only a few averaging volumes differ significantly
from the desired value. Yet this situation is quite important,
since the quality of a mixture is often determined by a few
poorly-mixed spots. Therefore, as a second measure of dis-
tributive mixing we propose the maximum sample error E,
which is the maximum deviation of any averaging volume
from the global mean:

E(L)Emaxl(C),-—a €]

Again the notation emphasizes that £ depends on L. We
will see that E(L), while not radically different from o(L),
does make some features of the mixture pattern more
readily apparent.

Both E and o lend themselves well to answering the
question “When is the distributive mixing good enough?”
For any application one should be able to choose a critical
sample size L* and critical deviations E* and o%, such that
any mixture with E(L*) < E* and/or o(L*) £ 6* possesses
adequate distributive mixing. These criteria guarantee that
no sample of size L* will have too large a deviation from
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the desired mean composition. Of course these are mac-
roscopic criteria; in practice it may also be important to sat-
isty other criteria for adequate microscale mixing.

The size and shape of the averaging volume matter, but
the measures are insensitive to the distribution of material
within the averaging volume. A mixture that has a check-
erboard pattern of individual cells is, by this definition, per-
fectly distributed if V,,, is a square of two cells by two
cells, but perfectly segregated if V,,, is a single cell. One
can only say that a given pattern is well mixed agfter an
averaging volume has been chosen. For this reason, it
makes sense to examine any mixtures using a range of
sample sizes.

The sample variance ¢ has long been used as a measure
of mixing quality (Danckwerts, 1952; Scott and Bridg-
water, 1974; Tucker, 1981), and it is often normalized by
its value for a completely segregated mixture, c(1 — c). We
use o(L) in its dimensional form here to facilitate com-
parisons with E(L).

Several analyses have shown that the sample variance
can be derived from the correlation function for ¢(x) (Scott
and Bridgwater, 1974; Tucker, 1981). These analyses reas-
sure us that, by computing (L) or E(L) for large samples,
we are taking into account the correlations in composition
between nearby cells. However, these analyses all begin
with the assumption of uniform statistical properties across
the entire measurement area. Thus, they cannot be applied
to the present case, where we have no a priori expectation
of statistical uniformity. Sample variance analysis, and the
relationship between sample variance and scale of segre-
gation (Danckwerts, 1952), are useful only in the analysis
and measurement of mixtures on the microstructural level.

3. Generation of mixture patterns

We consider mixing in 2-D time-periodic flows in a rect-
angular cavity with upper and lower moving walls. Many
aspects of mixing in this flow have been studied, both
experimentally and theoretically (Chien et al., 1986; Leong
and Ottino, 1989; Ottino, 1989; Liu er al., 1994b,a;
Meleshko and Peters, 1996). The mixture patterns exam-
ined here were generated using the mapping method of
Kruijt, Galaktionov, Anderson, Peters, and Meijer (2001).
The mapping method treats passive mixing, i.e., the mixing
of two fluids with equal viscosity and no interfacial ten-
sion, in laminar flow. All cases examined here concemn the
creeping flow of a Newtonian fluid, and use a rapidly-con-
verging series solution for the velocity field (Meleshko,
1996). The cavity has a height to width ratio of 3/5.

Briefly, the mapping method works as follows. The cav-
ity is divided into cells, in this case an array of 120 x 200
square cells. A few particular values for the displacement
of the moving wall are chosen. Here we use dimensionless
displacement values D of 1, 2, and 4. These lengths are
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scaled by the half-width of the cavity, so D =2 means that
a point on the moving wall that begins at the upper left-
hand comer of the cavity will translate to the upper right-
hand corner. For each value of D the displacement and
deformation of the cell boundaries is calculated, using an
adaptive interface tracking method. This method tracks the
position of multiple points on the cell boundary and adds
points adaptively, allowing the displaced boundaries to be
found for large deformations (Galaktionov et al., 2000).

The displaced and distorted cells are overlaid on the orig-
inal cell pattern, and the components of the mapping
matrix [@D] are calculated such that @; equals the area of
the deformed cell j that lies on top of undeformed cell i.

Finding @ for each displacement is a demanding calcu-

Iation that is done once, off line, and the results are stored
for later use.

The mixing simulation then proceeds in a stepwise fash-
ion. The initial pattern for each step is represented by a set
of initial cell concentrations C; on the undeformed cells.
The C value in any cell is, of course, maintained as the cell
is distorted, but at the end of the step the mapping cal-
culation transfers this information back to the undeformed
cells according to

Crev =3 @,C; (5
j

Each succeeding step is found by repeating this multipli-
cation, inserting the previous result for Crev on the right-
hand side. The matrix [D] is large (in this case 24,000 X
24.,000), but sparse. With an appropriate sparse matrix
algorithm each multiplication of Eqn. (5) can be done quite
rapidly.

The mixtures in Fig. 1 all begin from an initial condition
of white fluid in the left half of the cavity, and black fluid
on the right. This is the initial condition for all subsequent
data, except when stated otherwise.

A mixing protocol consists of a periodic sequence of
motions of the top and bottom walls, either to the left or to
the right. Each step in the protocol uses one or more mul-
tiplications like Eqn. (5) to accumulate the necessary wall
displacement. The different sequences of top and bottom
motion studied here are listed in Table 1. Individual pro-

Table 1. Protocols used to generate example mixtures. 7 denotes
motion of the top wall to the right, and B motion of the
bottom wall to the left. (—=7) and (—B) are top and bot-
tom motions in the opposite directions

Protocol Step Sequence
A T
B TB
C TBTB BTBT
D TBBT BTTB BTTB TBBT
E TB(-T)(-B)

200

tocols are indicated by a letter from this table, indicating
the sequence of steps, and by the dimensionless displace-
ment taken at each step. Thus, one period of protocol B8
consists of moving the top wall 8 units to the right, and
then moving the bottom wall 8 units to the left.

The total displacement D,, is the sum of the absolute val-
ues of the displacements D for each step, and is propor-
tional to the amount of work done in deforming the
mixture. Since we only consider creeping flows here, the
displacement of the fluid and the amount of mixing depend
only on D,,, and not on the velocity of the motion. Thus,
D, is a convenient and appropriate measure of mixing
time. All of the patterns in Fig. 1 have a dimensionless total
displacement of 128, where again we non-dimensionalize
by one half of the cavity width. The dramatic differences
between the patterns in Fig. 1 show clearly that, although
the total work is the same, different protocols have very
different mixing behavior.

The mapping method only resolves the distribution of

(c) D2

() D4 &) C16

(g) E8 (h) B16

Fig. 1. Example mixtures, created using protocols from Table 1.

All mixtures in this figure have a total dimensionless dis-~
placement of 128.
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material on the scale of the cell size, so it will smooth out
differences in concentration that are sharper than this. The
effect can be seen, for example, in mixture A8 in Fig. 1(a).
The large black and white regions in the center of this mix-
ture should meet at a sharp border, but there is a thin gray
region in between that smooths the transition.

This smoothing also introduces errors in the transport of
the material. During each mapping step, material from a
donor cell j is distributed into several recipient cells,
according to the coefficients @;in the mapping matrix. In
reality, a specific portion of cell j is transported to one
recipient, and other portions are transported to other recip-
ients. If the donor cell j contains a mixture of black and
white fluid, the exact solution may be that some recipient
cells should receive only black fluid, and some should
receive only white. But in the mapping method all recip-
ients are given the cell average concentration C;. This effect
gradually smooths out concentration differences between
cells, and we will refer to it as numerical diffusion.

The numerical diffusion present in the mapping method
is neither uniform in space nor isotropic, and analyzing its
influence is a difficult task. For the present we simply note
that the desired result of distributive mixing is to transform
all cells from their initial black and white colors to a uni-
form gray, and in the mapping calculation this occurs by
two mechanisms: transport of both black and white fluid
into a cell, and numerical diffusion. The first mechanism is
the physical process we wish to model, and the second
mechanism is a numerical artifact that is inherent in the
calculation. When we study time-dependent behavior of
the mixture measures in section 5, we will want to be
aware of this numerical artifact when interpreting the
results.

4. Measures for example mixtures

To demonstate the properties of E(L) and o(L), we apply
them to the two-dimensional mixtures shown in Fig. 1. The
results of the mapping calculation provide the value of C
for each cell.

For present purposes a compact averaging volume seems
appropriate, so the averaging volume is chosen to be a
square of Nx N cells. L is taken as the length of an edge
of this square, and its value (in the same dimensionless
units used to describe wall displacement) is N/100. Values
of E and o are computed for a variety of sample sizes and
reported as E(N) and o(N), using values of N ranging from
one to 120.

The sample concentrations (C); for each N were com-
puted using a moving average. That is, the averaging win-
dow was placed over the top left corner of the image and
a value of (C); was computed. Then the window was
moved to the right by one cell and another value computed,
and so forth. The (C), values are actually computed using
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Maximum Sample Error, E

00 20 40 60 80 100 120
Sample Size, N (cells)
(a) Maximum sample error
10°

Sample Standard Deviation, ¢

107 -
10 10 10
Sample Size, N (celis)

(b) Sample standard deviation

Fig. 2. Distributive mixing measures for the example mixtures in
Figs. 1 and 3.

fast Fourier transform methods. For any value of N this
produces an array of (200 —N + 1) X (120 — N + 1) values
of (C). E(N) and o(N) are then extracted from these val-
ues.

Fig. 2 shows the measures for the mixtures from Fig. 1.
Looking at results for E(L) in Fig. 2(a), we find many inter-
esting features. First, as one might expect, E tends to
decrease with increasing N, and better distributive mixing
corresponds to lower values of E. The ordering of the
curves in Fig. 2(a) generally matches one’s visual impres-
sions of the mixtures in Fig. 1. ’

Second, the presence of a distinct bad spot, or island, in
the mixture appears as a flat spot in the curve at small N.
The curve starts to drop (exhibits a “knee”) at a value of N
on the order of the island size. Mixtures A8 and B8 both
have islands that are about 30 cells wide, while mixture C8
has an island about 10 cells wide. Mixtures E8 and B16
have no islands, or at least none larger than the cell size; for
these mixtures the curve of E(N) exhibits a downward
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slope between N=1 and N=2.
The maximum sample error E allows mixtures with very
dissimilar macrostructure to be compared. Mixtures A8

and B8 are not at all similar in appearance, but in terms of

E(N) they have quite similar quality of distributive mixing.
This ability to make quantitative and unambiguous com-
parisons is precisely what one seeks from a mixing mea-
sure. However, the scale of observation, L or N, must be
specified before it is possible to say that one mixture is bet-
ter than another. For any N > 25, we would say that mix-
tures C8 and D4 are quite similar, and that mixture C16 is
better. But if we chose N=1 then D4 is as good as C16,
and both mixtures are much better than C8. Looking again
at Fig. 1, we see that D4 and C16 have streaks of unmixed
material that are similar in width, while C8 has a somewhat
larger blob of poorly mixed material. The sample error E
is sensitive to the sizes of these blobs or streaks.

Similarly, if we compare mixture D2 to mixtures A8 and
B8, we see that D2 is noticeably better for N <40, but
noticeable worse for N> 70. This is due to a long-range
segregation in mixture D2, which on the average is darker
on the right and lighter on the left. These examples empha-
size the importance of the averaging volume size in assess-
ing distributive mixing.

The standard deviation curves in Fig. 2(b) are smoother
than the curves for E, because standard deviation is a more
robust statistic, but they offer less information to interpret
the characteristics of the mixture. The o(N) results gen-
erally rank the mixtures in the same way as E(N). However,
if we looked only at o(N) for N < 10, we would say that
mixtures C8 and D4 are equivalent, and that C16 is better.
The standard deviation is not as sensitive as E to the small
poorly-mixed streaks in C16, because it averages data from
the entire mixture, and many of the cells in C16 are quite
well mixed. In a similar way, the standard deviation gives
a different relative assessment of mixtures A8, B8, and D2,
saying that B8 is better mixed than D2 for small N. Both
measures agree that D2 is the least well distributed on large
scales, but the crossover comes at N=20 for ¢ and at
much higher values for E.

An important difference between the two measures is
that E is sensitive to the absolute size and composition of
the worst spot, regardless of the overall size of the mixture.
In contrast, o loses track of a fixed-size flaw as the overall
size of the mixture is increased. To illustrate this point, we
extend pattern B8 by embedding it in the center of an array
of 240 by 400 cells, setting the concentrations of all the
new cells to the average of the original B8 pattern. This
extended pattern, shown in Fig. 3, has four times the area
of the original B8 pattern, assuming that the cell size is
constant. The curve for E(N) for this mixture, shown in
Fig. 2(a), is unchanged except for very large sample sizes.
We can still see, in the early shape of the curve, the pres-
ence and size of the island. In contrast, the 6(N) curve for

202

Fig. 3. B8 mixture pattern, extended to a total size of 240 by 400
cells. Data for this pattern is labeled “B8 ext” in Fig. 2.

Maxmum Sample Error, E(1)

0 500 1000 1500 2000

Total Displacement, D(Ot

(a) Maximum sample error

10
By
= 10"
©
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. ——

5 1071 B8*
w
° —— D2
'g" —— C8
E || -- c8
» 071 o c16

—»— B16

--- B16*

1070 . ‘ ‘
0 500 1000 1500 2000

Total Displacement, Dml
(b) Standard deviation

Fig. 4. Mixture measures for N =1 versus total displacement for
different protocols. The curves labeled B8*, C8%*, and
B16* start with white fluid in the top half of the cavity
and black fluid in the bottom half; all other data uses a
left/right initial condition.

the new mixture (Fig. 2(b)) is considerably lower than the
original B8 curve, giving the impression that the extended
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B8 pattern is somehow better mixed than before. This is
hardly the case, since from either pattern we can draw out
a sample whose composition is far from c.

5. Time dependent behavior

The mixing measures £ and ¢ can be used to study how
distributive mixing develops with time in the time-periodic
cavity flows described in Table 1. Fig. 4 shows E and o for
N=1, plotted against total displacement of the upper and
lower walls D,,, for selected protocols from Fig. 1. The
curves for mixtures D4 and E8, which are not shown, are
very similar to the curves for C16 and B16. Note that the
images in Fig. 1 correspond to a total displacement of D,,
= 128, while the curves of Fig. 4 begin at zero displacement
and continue to very large values. Recall that D, is the proper
measure of time, or mixing effort, for these creeping flows.

As one might expect, the general trend is for all curves
in Fig. 4 to decrease with time. However, the various mix-
ing protocols behave quite differently from one another.
Protocols C16 and B16 mix rapidly and exhibit steep
curves, protocols A8 and B8 mix very slowly and have at
curves, while protocols D2 and C8 fall in between.

The curves for protocols C16 and B16 bottom out in the
vicinity of E or ¢ equal to 10~°. This is a numerical artifact
of the mapping method, not a physical behavior. At this
point in the calculation all cells have almost the same value
C, and the distributive mixing is almost perfect. However,
because of roundoff errors in the mapping computation,
Eqn. (5), there is always a small amount of variation
among the C’s, which we can see in Fig. 4 because of the
logarithmic axis. If the precision of the mapping calcu-
lation were increased the curves would continue down-
wards, but would eventually flatten again at some lower
level. Of course, a value of E or o less than, say, 107 might
be adequate mixing for many purposes, while a value less
that 10~ would be hard to detect experimentally, and
should represent sufficient distributive mixing for almost
any purpose. The curves flatten well below these values, so
the present calculations have adequate numerical precision.
The bottoming of the curve simply signals the end of the
meaningful data from the mapping calculation.

5.1. Chaotic flows

An important feature of Fig. 4 is that the data for several
protocols achieve constant slopes on this semi-logarthmic
plot, implying that these protocols possess a long-time
asymptotic behavior in which E and ¢ decrease exponen-
tially with time. A careful examination of the data shows
that E decreases with the same exponent as ¢ for protocols
D2, C8, C16, and B16. E and ¢ are different statistics for
the distribution of sample values (C), so the fact that both
statistics decrease at the same rate implies that the dis-
tribution of cell values is changing in a self-similar way.
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Fig. 5. Normalized sample error E(N)/E(1) for chaotic protocols.
As total displacement D, increases, the curves for each
protocol converge to a single shape. Dotted lines connect
data for the top/bottom initial condition; solid lines are for
the left/right initial condition.

This self-similarity is demonstrated in Fig. 5 for proto-
cols B16 and C8. Here the data for E(N) at each value of
displacement are divided by the current value of E(1) so
that, once the curves achieve a self-similar shape, the data
for different total displacements should superimpose.
Indeed this is what we observe in Fig. 5. For protocol B16
the curve is very close to the asymptotic result when D,
equals 512, and for D,,, = 768 to 1280 the superposition is
almost perfect. Protocol C8 mixes more slowly, so the
asypmtotic behavior is reached at somewhat higher values
of total displacement. The curves for o(N)/o(1) exhibit the
same behavior, so this data is not shown. Note that the nor-
malizing factor E(1) decreases with time, causing some of
the curves in Fig. 5 to lie below the asymptotic curve.
However, the actual values of E(N) decrease monotonically
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(b) Diot = 1024, 0 = 6.53 x 1078

Fig. 6. Self-similarity of the scaled concentration deviation (C —
C)/o for protocol B16. The initial condition is white on
the left and black on the right.

with D,,, like the curves in Fig. 4.

Fig. 6 provides a visual display of this self-similarity.
Here we show the B16 mixtures for D, equal to 512 and
1024, both of which are in the region of asymptotic behav-
ior. If these images were plotted using the values of C on
a scale from 0 to 1, both pictures would be uniformly gray.
To expose the small variations in concentration, Fig. 6 plots
(C - C)lo, the deviation in cell concentration from the
mean, normalized by the standard deviation among all
cells. While the standard deviation differs greatly between
the two figures, the spatial patterns of the normalized con-
centration deviation are identical.

An important implication of self-similarity in E(N) is that
the exponential decrease with time is independent of the
sample size, N or L. If we added curves for other values of
N to Fig. 4, they would fall below the curves for E(1), but
would asymptote to straight lines with the same slope. The
exponential decrease of E and ¢ is an intrinsic behavior of
a particular globally chaotic flow, and does not depend on
the sample size used to assess the quality of mixing.

We can now summarize the asymptotic behavior of E and
o as follows:
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(LD, =keb(L)e " o(L,D,) =k,oLye " (6)
A is a characteristic time constant, expressed here in units
of dimensionless total displacement. The functions E(L)
and o(L) represent the asymptotic mixing measure curves
as observed in Fig. 5, and kg and &, are constants. We will
see in a moment that the details of this asymptotic behavior
are affected by numerical diffusion in the mapping cal-
culation.

The exponential decrease in the mixture measures, and
the self-similarity in the mixture patterns and mixture mea-
sures, are expected consequences of a globally chaotic
flow. The mapping results for protocols B16, C16, C8, and
D2 all exhibit these behaviors. A true globally chaotic flow
would have no islands, and hence no regular regions. The
protocols studied here may contain some small islands.
However, if the islands are of the same order or smaller
than the cell size, then they will be invisible to the mapping
method, and the mapping calculation will behave as if the
flow were globally chaotic. We will henceforth use “glo-
bally chaotic” in this looser sense. Fig. 4 shows clearly that
not all chaotic protocols are equally effective at mixing.
Protocols B16 and C16 give very similar mixing perfor-
mance, while protocols D2 and C8 mix at a significantly
lower rate.

5.2. Dependence on initial conditions

For globally chaotic protocols, the rate of exponential
decrease of E and o, and the asymptotic shape of the E(L)
curve, are independent of the initial condition. To show
this, the calculations for protocols B16 and C8 were
repeated with an initial condition of white fluid in the top
half of the cavity and black fluid in the bottom half. The
curves labeled C8* and B16* in Fig. 4, and the data con-
nected by dotted lines in Fig. 5, are for this initial con-
dition. In Fig. 4 we see that during the early stages of
mixing the B16* curve is somewhat different than the B16
data, but when the curves reach their asymptotic behavior
they have the same slope, indicating that they have the
same time constant A. The C8* and C8 curves also asymp-
tote to the same slope.

Similarly, the normalized E(N) data in Fig. 5(a) is quite
different from the top/bottom initial condition in the early
stages of mixing. However, by the time D, equals 512 the
top/bottom data is very close to the asymptotic curve, and
data from higher total displacements falls directly on top of
the data for the first initial condition. Fig. 5(b) shows the
same behavior for protocol C8, though the shape of the
asymptotic curve is different.

In terms of Eqn. (6), the only factors affected by the ini-
tial configuration of the fluids are k¢ and k,. The time con-
stant A and the functions E(L) and &(L) are intrinisic
properties of the mixing protocol.

Fig. 7 shows the concentration deviations for this initial
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-2 -1

(b) Diot = 1024, 0 = 2.33 x 1077

Fig. 7. Self-similar scaled concentration deviations (C — C)/o for
protocol B16*. Same as Fig. 6, but the initial condition is
black on the top and white on the bottom.

condition, on the same normalized scale as in Fig. 6. Again
the figures for the two values of D,,, are identical. The two
images in Fig. 7 are also nearly identical to Fig. 6.

5.3. Regular protocols

In a periodic flow, a regular region (i.e., an island) is one
in which each fluid particle returns, at the end of each
period, to some location on a fixed orbit. Protocol A8, in
which the top wall moves only to the right, is completely
regular, since the flow is steady and each particle circulates
on a fixed streamline. Protocol B8 has a large regular
island, readily visible in Fig. 1, which surrounds a first-
order elliptic point. There are also three smaller third-order
islands surrounding the larger one (Kruijt et al., 2001). We
will call flows like A8 or B8 regular protocols, even though
the region outside the islands in B8 is chaotic.

Physically, the fluid in an island does not communicate
with the rest of the mixture, but remains within the island
boundaries for all time. There may well be stirring inside
the island, though the interfacial area within the island will
grow linearly rather than exponentially. This may even-
tually lead to an even distribution of the two fluids within
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the island. However, the overall composition of the island
is fixed by the initial configuration of the fluids, and does
not change with time. If the island is initially off-ratio on
average, the best that can be done is to give this island-
average concentration to every cell in the island. As the
island becomes homogeneous, and the chaotic regions also
become well mixed, the measures E(L) and o(L) should
asymptote to constant values, which will depend on the ini-
tial configuration of the fluids.

The numerical behavior of the mapping method will be
somewhat different from this physical behavior, especially
at long times. The numerical diffusion present in the map-
ping method causes the calculation to slowly exchange
material between the island and the remaining, chaotic
regions of the flow. This occurs because some cells strad-
dle the island boundaries, and the homogenization of the
cell after each mapping step transfers material between the
regular and the chaotic regions. As a consequence, E(L)
and o(L) as computed by mapping do not level off at con-
stant values, but continue to decrease slowly.

This effect is evident in Fig. 4, where the curves for the
regular protocols A8 and B8 decrease 12 very slowly com-
pared to the chaotic protocols. The curve labeled B8* is for
the top/bottom initial condition. This curve drops much
more rapidly, until it finally levels out around D,, = 1500.
The top/bottom initial condition results in a much better
final mixture for protocol B8 than the left/right initial con-
dition, because the top/bottom initial condition places
nearly equal amounts of black and white fluid in this par-
ticular island.

The presence of the island also eliminates the self-sim-
ilarity of the E(N) and o(N) curves. Fig. 8 shows the nor-
malized data E(N)=E(1) for protocol B8 at various times.

10°

10

Normalized Sample Error, E(N)/E(1)

) . . ‘ 1
0 20 40 60 80 100
Sample Size, N

10

Fig. 8. Normalized sample error, E(N)/E(1), for the regular pro-
tocol B8 at different values of total displacement D,
showing that self-similarity does not occur in this regular
protocol. Dotted lines connect data for the top/bottom ini-
tial condition.

December 2003 Vol. 15, No. 4 205



Charles L. Tucker III and Gerrit W. M. Peters

The data for the left/right initial condition (connected by
the solid lines) appears to be approaching a constant shape,
but the date for the top/bottom initial condition (the dotted
lines) does not achieve the same shape.

This loss of self-similarity implies that for regular pro-
tocols the asymptotic slopes for E and o are not the same.
That is, while E and ¢ may both exhibit a slow exponential
decline due to numerical diffusion, they do not decay at the
same rate. This result is observed for both the A8 and B8
protocols in the data of Fig. 4, and is another signature of
the presence of a large regular region in the flow.

5.4. Numerical diffusion in chaotic protocols

While we cannot eliminate numerical diffusion from the
mapping calculation, we can explore its inuence on the
results by increasing the amount of diffusion. This is
accomplished by using a smaller step size D to accumulate
the same total displacement, where D is the dimensionless
displacement of the moving wall for an individual mapping
step. All of the results so far, except for protocol D2, use
only the mapping matrix for D = 4. If the same results are
computed using a mapping matrix for D = 2, then there are
twice as many steps in the calculation and the diffusion is
increased.

Fig. 9 shows the behavior of E(1) versus D, for pro-
tocols B16, C8, and B8, using D values of 4, 2, and 1. For
protocol B16 the early parts of the curves for different D’s
are very similar. However, as mixing improves the results
for smaller D fall away faster, and their asymptotic slope is
significantly steeper. All of the calculations for B16 bottom
out at about the same level, but this level is reached sooner
when the numerical diffusion is larger. Similar behavior is
observed for the other globally chaotic protocol, C8. Here
the slope is quite a bit shallower, and the differences caused
by numerical diffusion are smaller. While numerical dif-
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Fig. 9. Effect of numerical diffusion on E(1). Numerical diffusion
increases as D, the displacement of the individual map-
ping step, decreases.
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fusion has a distinct inuence on the results of the calcu-
lation, it still does not obscure the difference between
protocols B16 and C8. The results for the regular protocol
B8 also show a slope change due to numerical diffusion,
though of course the mixing is never very good in this case.

From these results we conclude that the asymptotic slope
of E in mapping calculations is inuenced by numerical dif-
fusion, and that we should not attach too much significance
to the numerical value of A produced by the calculations.
This raises an important gualification on all of the obser-
vations in this section: they apply rigorously only to the
mapping calculation, and we have not proved that the phys-
ical mixing flow will have all of the same behaviors.

From the point of view of demonstrating the use of £ and
o as mixing measures this presents no problem. The map-
ping calculation itself represents an interesting dynamical
system, albeit an artificial one, that produces spatial mix-
ture patterns. Clearly E and ¢ are useful tools for analyzing
and describing the distributive mixing properties of the
mapping method.

From the scientific point of view these results raise the
interesting possibility that chaotic time-periodic fluid flows
may exhibit the same asymptotic behavior, presumably
with a somewhat larger value of A than is predicted by the
mapping method. Determining whether this conjecture is
true requires some other type of calculation. However, a
better calculation is difficult to do. As a simple example,
one might imagine placing a large number of tracer par-
ticles in the flow, marking each one black or white accord-
ing to its initial location, and following the particle motion
over time. At any time one could average the concentration
of all particles in a cell to get the cell value for C, and then
analyze the distributive mixing state by finding E(L) and
o(L).

Similar “box counting” calculations have been performed
by Jones (1991) and Liu ez al. (1994a), however those cal-
culations provide only a coarse measure of material dis-
tribution. Resolving the asymptotic behavior of ¢ and E
would require tracking an extremely large number of
points. If each cell contained # tracer particles whose col-
ors were selected at random, then the standard deviation
among the cell values would be .Jc(1-c)/n; this is the res-
olution for ¢ with this method. From Fig. 9 we see that the
asymptotic region begins at around o= 107. Achieving
this resolution with the current grid of 24,000 cells would
require tracking the paths of more than 10" particles. To
date, tracking 10° particles is about the largest calculation
that is typically done today. If we actually wanted to obtain
an accurate value for A, this might require resolving the
variance to within 107, which pushes the number of par-
ticles over 10",

In contrast, each of the mapping calculations reported
here is done in less than a minute on a personal computer.
The mapping method provides a convenient and powerful

Korea-Australia Rheology Journal



Global measures of distributive mixing and their behavior in chaotic flows

tool that can rapidly compare different protocols, and that
can carry the mixing calculation forward to very high lev-
els of homogeneity. It is these characteristics that have made
the present exploration of distributive mixing possible.

6. Summary

This paper had two goals: to define meaningful measures
of distributive mixing, and to demonstrate their application
in the study of chaotic mixing.

In defining mixing measures, we began by choosing a
length scale, the cell size, to separate the macroscopic and
microscopic aspects of the mixture structure. The under-
lying data for the macrostructure consists of cell-average
concentrations. The goal of distributive mixing is to make
the average concentration in some finite-size sample
approximately equal to the global average concentration,
for any sample location in the mixture. This sample size
may be the cell size, or it may be much larger.

Two measures of distributive mixing were proposed and
examined: the standard deviation among samples ¢, and
the maximum sample error E. Both measures are closely
related to the goal of distributive mixing, in that a small
value of either means that the cell concentrations are nearly
uniform.

The maximum sample error is more sensitive to the pres-
ence of a few poorly-mixed spots, and the curve of E ver-
sus sample size is readily interpreted in terms of the size
and concentration in the bad spot. Maximum sample error
is also insensitive to the size of the bad spot relative to the
overall size of the mixture; a small uniform mixture with
one bad spot, and a larger uniform mixture with the same
bad spot, will have nearly identical values of maximum
sample error. The disadvantage of E is that it requires
knowing the concentration everywhere in the mixture. In
this regard it is most useful for assessing numerical sim-
ulation results, while & may be more useful for experi-
ments.

Both E and o provide the ability to compare mixture pat-
terns that may be quite different in appearance, and to say
which mixture is better distributed. Both measures can be
applied to determine whether or not a pattern is suficiently
well mixed for a given purpose. Either determination
depends on the sample size, which must be chosen to suit
the application. Both measures can be applied at any stage
of the mixing process, from completely segregated to com-
pletely homogenized mixtures.

The two mixing measures were used to examine the dis-
tributive mixing behavior for time-periodic flows in a rect-
angular cavity. The mixing patterns were calculated using
the mapping method, which has finite spatial resolution
and a certain amount of numerical diffusion. The mapping
method is limited to fluids with homogeneous rheological
properties and no interfacial tension; here we consider
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creeping flows of Newtonian fluids. A variety of protocols,
involving time-periodic sliding motions of the upper and
lower cavity surfaces, were studied. Some of these pro-
tocols produced nearly global chaotic motion, in the sense
that the mapping method could detect no regular regions.
Other protocols contained large regular islands, and are
referred to here as regular flows.

The globally chaotic protocols provided the most rapid
mixing, and exhibited a distinct asymptotic behavior at
long times. The long-time behavior involved an exponen-
tial decrease in both mixing measures, £ and o, with the
same time constant. This asymptotic behavior is indepen-
dent of the sample size used to determine E or ©. Cor-
responding to this, curves of E(L) and o(L), where L
measures the sample size, achieve a self-similar shape in
the asymptotic limit. Changing the initial configuration of
the two fluids changes the initial rate of mixing, but does
not alter the mixing rate or the self-similar behavior in the
asymptotic limit.

Regular flows behaved quite differently. They tend to
mix much more slowly, and at long times they should
approach constant values of E and o. In fact the mapping
results show a slow drift downward from these constant
values, because numerical diffusion exchanges some mate-
rial between the island and its surroundings. For regular
flows the degree of mixing at long times is strongly depen-
dent on the initial configuration of the fluids, and partic-
ularly on the average content of any islands. For regular
protocols there is no self-similarly in E(L) or o(L), and E
and o have different long-time drift rates.

Strictly speaking, the preceding conclusions apply only
to the mapping calculation, which is itself an interesting
dynamical system. While these results are consistent with
our understanding of the mixing behavior of chaotic flows,
the calculations shown here do not rigorously demonstrate
that fluid flows will exhibit exactly these behaviors. The
numerical diffusion present in the mapping method clearly
affects the decay rate for £ and o. From the scientific view-
point the observations made here present an interesting
suggestion about the nature of distributive mixing in cha-
otic flows, a suggestion that might be supported by other
types of calculations. The mapping method has provided a
facile tool with which one can rapidly explore different
mixing protocols, and which can probe the late stages of
mixing in which self-similar behavior seems to arise. For
the engineering viewpoint, the mapping method is a pow-
erful tool for comparing different mixing flows. It readily
distinguishes between flows that are close to globally cha-
otic and flows with large regular regions, and it also dis-
tinguishes between more and less effective chaotic
protocols. So long as one compares protocols that use the
same number of mapping steps, by using the same dis-
placement per step D, one can expect the relative results to
be meaningful.
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Regardless of whether the behaviors reported here are
physical characteristics of chaotic mixing flows, or are lim-
ited to the mapping calculation itself, we have accom-
plished the main goal of this work. E(L) and o(L) have
been shown to provide meaningful measures of distributive
mixing, and they can be used to study the nature and
progress of mixing processes in a quantitative way.
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