DOI QR코드

DOI QR Code

Evaluation of the State of Rocks in Load Steps by Low-frequency Ultrasonic Flaw Detection

저주파 결함 탐지법에 의한 하중 단계에 따른 암석 내부의 상태 평가

  • Kang, Seong-Seung (Department of Energy and Resources Engineering, Chosun University) ;
  • Kim, Jongheuck (Department of Energy and Resources Engineering, Chosun University) ;
  • Noh, Jeongdu (The Research Institute of Advanced Engineering Technology, Chosun University) ;
  • Na, Tae-Yoo (The Research Institute of Advanced Engineering Technology, Chosun University) ;
  • Jang, Hyongdoo (Western Australian School of Mines, Curtin University) ;
  • Ko, Chin-Surk (Department of Energy and Resources Engineering, Chosun University)
  • 강성승 (조선대학교 에너지자원공학과) ;
  • 김종혁 (조선대학교 에너지자원공학과) ;
  • 노정두 (조선대학교 공학기술연구원) ;
  • 나태유 (조선대학교 공학기술연구원) ;
  • 장형두 (커튼대학교 광업대학) ;
  • 고진석 (조선대학교 에너지자원공학과)
  • Received : 2017.02.17
  • Accepted : 2017.03.06
  • Published : 2017.03.31

Abstract

The purpose of this study was to quantitatively evaluate the state of rocks in load steps by using the low-frequency ultrasonic flaw detection method. The initial Vp-velocities measured with a CND tester were in the order of Z-axis < X-axis < Y-axis, with 1687.5 m/s along the X-axis, 1690.7 m/s along the Y-axis, 1548.3 m/s along the Z-axis, and an average of 1642.2 m/s. The overall average of the Q vlaues, measured with a Silver Schmidt hammer, was 62.6, which corresponds to a uniaxial compressive strength of ~105 MPa. The Vp-velocity, measured with a low-frequency ultrasonic flaw detector at load steps of 50%, 60%, 70%, and 80%, typically decreases in the order of X-axis < Y-axis < Z-axis with increasing load steps. This oder contrasts with that of the initial Vp-velocities. As the load step increases the factors that reduce the Vp-velocity in the X-axis direction are more influential than those in the Y-axis or Z-axis directions. This indicates that the initial state of rocks can vary and is dependent on the stress state.

이 연구는 저주파 결함 탐지법을 이용하여 하중단계에 따른 암석 내부의 상태를 정량적으로 평가하는 것이다. CND에 의한 초기 종파속도는 X축 방향 1687.5 m/s, Y축 방향 1690.7 m/s, Z축 방향 1548.3 m/s이며, 평균 1642.2 m/s로 Z축 < X축 < (${\fallingdotseq}$)Y축 관계를 보였다. 실버슈미트 해머에 의한 Q값의 전체 평균은 62.6으로 약 105 MPa의 일축압축강도에 해당되었다. 저주파 결함 탐지기에 의해 측정된 하중단계 50%, 60%, 70%, 80% 수준에서 종파속도 크기는 X축 < Y축 < Z축 순으로 대체적으로 하중단계가 증가함에 따라 감소하는 경향을 보였다. 하지만, 이들 값은 초기 종파속도와 다른 경향을 나타냈다. 하중단계가 증가함에 따라 Y축이나 Z축 방향보다 X축 방향의 종파속도를 감소시키는 요인이 더 많은 영향을 미쳤기 때문으로 판단된다. 이러한 사실은 암석 내부의 초기상태는 응력상태가 변화함에 따라 다르게 나타날 수 있다는 것을 의미한다.

Keywords

References

  1. Jang, M. H., Yang, H. S., and Chung, S. K., 2000, Stability analysis of high speed railway tunnel passing through the abandoned mine area, TUNNEL AND UNDERGROUND SPACE, 10, 395-402.
  2. Kim, J. G., Yang, H. S., Kim, W. B., Jang, M. H., and Ha, T. W., 2010, Stability analysis on the crushing facility space in mine tunnel, TUNNEL AND UNDERGROUND SPACE, 20, 3, 145-152.
  3. Koo, C., M., Jeon, S., W., and Lee, I., W., 2008, Underground mine design and stability analysis at a limestone mine, TUNNEL AND UNDERGROUND SPACE, 18, 4, 234-251.
  4. KSRM, 2010, Korea standard, Korean Society for Rock Mechanics, pp. 1-123.
  5. Lee, C. W., 2013, Application of low-frequency ultrasonic flaw detector for evaluating the weathering characteristics of stone cultural heritage, Master Thesis, Chosun University.
  6. Lee, S. G., 2014, A study on the urban subway stability in service due to neighboring construction of skyscraper, Master Thesis, Seoul National University of Science and Technology.
  7. Lim, H. S., Jang, B. A., Kim, J. H., and Kang, S. S., 2015, Estimation of R-value and uniaxial compressive strength of rocks around the King Sejong station, Barton Peninsula, Antarctica from Silverschmidt Q-value, TUNNEL AND UNDERGROUND SPACE, 25, 2, 199-209. https://doi.org/10.7474/TUS.2015.25.2.199
  8. Mawdesley, C., Trueman, R., and Shiten, W. J., 2001, Extending the Mathews stability for open stope design, Transactions of Institution of Mining and Metallurgy (Sect. A: Min. technology), 110, 1, A27-39. https://doi.org/10.1179/mnt.2001.110.1.27
  9. Sunwoo, C. and Jung, Y. B., 2005, Stability assessment of underground limstone mine openings by stability graph method, TUNNEL AND UNDERGROUND SPACE, 15, 5, 369-377.