• 제목/요약/키워드: Initial Crack

검색결과 644건 처리시간 0.027초

두께比를 考廬한 鎔接部의 疲勞龜裂傳播 解釋 (Analysis of Fatigue Crack Growth with Thickness Ratio in Weldments)

  • 차용훈;방한서;김덕중
    • Journal of Welding and Joining
    • /
    • 제14권5호
    • /
    • pp.69-77
    • /
    • 1996
  • This study aims to analyze the S. I. F. K value upon Mode I cracks in a finite-width plate of varying thickness, which is expressed in terms of width ratio ($\omega$), thickness ratio ($\beta$) and non-dimensional crack length (λ) by using the 2-dimensional finite element method. Then, by comparing the effectiveness of the results obtained by the two finite element methods, it is seen that the 2-dimensional finite element method can be used in order to analyse the S. I. F. K values upon a various thickness model. A model is developed in order to analyze the effects of initial residual stress upon the fatigue crack growth behavior in various thickness welded specimens. In this model, crack growth rate da/dN appears to be come small as the thickness ratio with the same ΔK is increased. Also, in the initial step, as ΔK is increased with crack growth rate is decreased and then increased because the repeated compressive residual stress retards crack growth rate.

  • PDF

이방성재료내 혼합모드균열의 진전 해석 (Analysis of Mixed Mode Crack Extension in Anisotropic Solids)

  • 임원균;강석진;진영균
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.301-308
    • /
    • 2001
  • The problem of predicting crack propagation in anisotropic solids which is a subject of considerable practical importance is examined. The effect of the second term in the asymptotic expansion of the crack tip stress field on the direction of initial crack extension is made explicitly. We employ the normal stress ratio theory to determine values for the direction of initial crack extension. The theoretical analysis is performed for the wide range of the anisotropic material properties. It is shown that the use of second order term in the series expansion is essential for the accurate determination of crack growth direction in anisotropic solids.

  • PDF

Dynamic fracture instability in brittle materials: Insights from DEM simulations

  • Kou, Miaomiao;Han, Dongchen;Xiao, Congcong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.65-75
    • /
    • 2019
  • In this article, the dynamic fracture instability characteristics, including dynamic crack propagation and crack branching, in PMMA brittle solids under dynamic loading are investigated using the discrete element method (DEM) simulations. The microscopic parameters in DEM are first calibrated using the comparison with the previous experimental results not only in the field of qualitative analysis, but also in the field of quantitative analysis. The calibrating process illustrates that the selected microscopic parameters in DEM are suitable to effectively and accurately simulate dynamic fracture process in PMMA brittle solids subjected to dynamic loads. The typical dynamic fracture behaviors of solids under dynamic loading are then reproduced by DEM. Compared with the previous experimental and numerical results, the present numerical results are in good agreement with the existing ones not only in the field of qualitative analysis, but also in the field of quantitative analysis. Furthermore, effects of dynamic loading magnitude, offset distance of the initial crack and initial crack length on dynamic fracture behaviors are numerically discussed.

막구조물의 파손단면에서의 응력집중 현상에 관한 연구 (A Study on the Stress Concentration at Crack of Membrane Structures)

  • 전진형;정을석;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.89-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures arc unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure. In this study, we investigate into the stress concentration at crack of membrane structures. Therefore, using the nonlinear analysis program that NASS (Nonlinear Analysis for Spatial Structures) perform nonlinear analysis, and stress distribution for creak length investigate for using linear elastic fracture mechanics.

  • PDF

증기발생기 전열관에서의 응력부식균열 성장해석 (Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes)

  • 신규인;박재학;김흥덕;정한섭
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.57-65
    • /
    • 2000
  • The stress corrosion crack growth is simulated assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noted that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF

폴리머-강섬유를 혼입한 고강도 콘크리트보의 전단거동에 관한 실험적 연구 (An Experimental Study on Shear Behavior of Polymer-Steel Fibrous High Strength Concrete Beams)

  • 곽계환;조선정;김원태;조한용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.601-608
    • /
    • 2000
  • Steel fiber and Polymer are used widely for the reinforcement material of RC structures because of its excellence of durability, serviceability as well as mechanical properties. Polymer-Steel fibrous high strength concrete beam's input ratio are 1.0%. The shear span-to-depth ratio are 1.5, 2.8 and 3.6, compressive strength of specimens 320kg/㎠, 436kgf/㎠ and 520kgf/㎠ in 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural crack and of diagonal crack, from which crack patte군 and fracture modes are earned. Also, stress-strain, load-strain and load-deflection are examined during the test cracks(shear crack, flexural crack, and diagonal tension crack), when the load values are sketched according to the growth of crack. Result are as follows; (1) The failure modes of the specimens increase in rigidity and durability in accordance with the increase of mixing steel fiber and polymer. (2) The load of initial crack was the same as the theory of shear-crack strength (3) Polymer-Steel fibrous high strength concrete beams have increased the deflection and strain at failure load, improving the brittleness of the high strength concrete. (4) In this result of study, an additional study need to make a need formular because the study is different from ACI formular and Zsutty formular.

  • PDF

반타원 표면균열의 피로성장 거동에 관한 연구

  • 최용식;양원호;방시항
    • 대한기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.916-922
    • /
    • 1986
  • 본 논문에서는 여러 연구자들이 반타원형 표면균열에 대한 응력확대계수의 수 정계수(correction factor)을 이론해석, 수치해석 및 실험해석 등을 통하여 구했는데, 그 결과는 서로가 5∼100%의 차이를 나타내고 있는 것이다. 이 때문에 표면균열에 대한 연구보고는 다른 분야에 비하여 비교적 적은 편이며, 현재까지 펴면균열의 피로 성장거동에 대한 정열이 설정되어 있지 못한 실정인 것이다. 이에 저자들은 표면균 열의 피로성장거동에 대한 다각적인 연구계획을 추진하고 있는 중이며, 본 보고서는 그 제1단계 연구로서, 초기 표면균열의 크기가 피로균열성장거동에 미치는 영향을 규 명하기 위한 실험적인 연구결과이다.

초기균열간격에 따른 연속철근콘크리트 포장의 피로강도에 대한 실험적 연구 (Experimental Study on Fatigue Strength of Continuously Reinforced Concrete Pavements with Initial Transverse Cracks)

  • 박종섭
    • 한국산학기술학회논문지
    • /
    • 제8권5호
    • /
    • pp.1173-1178
    • /
    • 2007
  • 공용하중으로 인하여 초기 균열을 가지고 있는 연속철근콘크리트 포장체를 제작하여 피로시험을 실시하였다. 초기 균열의 영향을 검토하고자 4개의 시험체가 제작되었으며 시험체의 길이 및 축소비율을 유한요소해석 및 재료특성을 고려하여 결정하였다 피로시험에 앞서서 정적시험을 실시하여 정적파괴하중을 확인하고 균열발생 진행상황을 조사하였다. 피로시험 결과로부터 초기발생균열의 간격이 증가할수록 피로수명이 증가하는 것을 확인할 수 있었다. 본 연구의 결과는 국내고속도로에 건설된 연속철근콘크리트 포장의 유지보수에 적극 활용될 수 있을 것이다.

  • PDF

확장변위함수와 불연속함수를 적용한 Mesh-free 균열해석기법 (A Mesh-free Crack Analysis Technique Using Enriched Approximation and Discontinuity Function)

  • 이상호;윤영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.335-342
    • /
    • 2001
  • In this paper, an improved Element-Free Galerkin (EFG) method is proposed by adding enrichment function to the standard EFG approximation and a discontinuity function is implemented in constructing the shape function across the crack surface. In this method, the singularity and the discontinuity of the crack are efficiently modeled by using initial node distribution to evaluate reliable stress intensity factor, though the standard EFG method requires placing additional nodes near the crack tip. The proposed method enables the initial node distribution to be kept without any additional nodal d.o.f. and expresses the asymptotic stress field near the crack tip successfully. Numerical example verifies the improvement and the effectiveness of the method.

  • PDF

반복 유한요소 결함 성장 해석을 위한 결함 모델링 및 응력확대계수 계산 절차의 타당성 검증 (Validation of Crack-Tip Modeling and Calculation Procedure for Stress Intensity Factor for Iterative Finite Element Crack Growth Analysis)

  • 이기범;장윤영;허남수;박성훈;박노환;박준
    • 한국압력기기공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.36-48
    • /
    • 2021
  • As the material aging of nuclear power plants has been progressing in domestic and overseas, crack growth becomes one of the most important issues. In this respect, the crack growth assessment has been considered an essential part of structural integrity. The crack growth assessment for nuclear power plants has been generally performed based on ASME B&PV Code, Sec. XI but the idealization of crack shape and the conservative solutions of stress intensity factor (SIF) are used. Although finite element analysis (FEA) based on iterative crack growth analysis is considered as an alternative method to simulate crack growth, there are yet no guidelines to model the crack-tip spider-web mesh for such analysis. In this study, effects of various meshing factors on FE SIF calculation are systematically examined. Based on FEA results, proper criteria for spider-web mesh in crack-tip are suggested. The validation of SIF calculation method through mapping initial stress field is investigated to consider initial residual stress on crack growth. The iterative crack-tip modeling program to simulate crack growth is developed using the proposed criteria for spider-web mesh design. The SIF results from the developed program are validated by comparing with those from technical reports of other institutes.